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Introduction

The European Union is currently debating the design of the Excessive Deficit Procedure of its

fiscal rule (the Stability and Growth Pact). The debate centers on the fundamental trade-off

in the design of a fiscal rule: how to optimally balance the need to impose discipline on a

deficit-biased government with the need for discretion to respond to shocks to the country’s

fiscal needs. Should society impose discipline on its government with a fiscal rule featuring a

graduated schedule of penalties on excessive deficits, a cap on deficits, or a combination of the

two?

A main insight from the literature is that, under some conditions on the distribution of shocks

to fiscal needs, a maximally enforced deficit limit is optimal (Halac and Yared (2022)). An

assumption in much of the literature is that the cost of imposing discipline on a government

is borne symmetrically by the government and the society. The sources of discipline on the

government’s fiscal policy, however, range from formal enforcement mechanisms such as the

Excessive Deficit Procedure of the Stability and Growth Pact to informal mechanisms such as

higher spreads on borrowing or negative coverage by the press. The point of departure of this

paper is that the cost of imposing discipline on the government may be borne asymmetrically by

the government and the society.

This paper makes two main contributions. First, I study the optimal design of a fiscal rule

enforced by penalties whose burden is borne asymmetrically by the government and the society,

as in the “leaky bucket” model of government finances (Amador and Bagwell (2013, 2020)). The

analysis covers the full range of degrees of asymmetry in the cost of discipline. At one end of

the spectrum, the asymmetry is maximal in the sense that the society is immune to the penalty

on the government, and the optimal fiscal rule is a graduated schedule of penalties reminiscent

of a Pigouvian tax. The other end of the spectrum nests the symmetric case, and the optimal

fiscal rule is a cap on the deficit, in line with the main insight from the literature. The focus

of this paper is on characterizing optimal fiscal rules for degrees of asymmetry between the two

polar cases. While the main insight from the literature prevails under more stringent conditions,

under a complementary set of conditions, a fiscal rule featuring a graduated schedule of penalties

is optimal.

The second main contribution is a first step toward quantifying the trade-off between discipline
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and discretion in the design of a fiscal rule. I propose a tool to measure the need for discretion

based on government finance data. As the theory shows, the thickness of the right tail of the

distribution of shocks to fiscal needs provides a quantifiable measure of the need for discretion.

I find evidence of a Pareto tail of the distribution of shocks to fiscal needs of members of the

European Union, which indicates a large need for discretion.

I obtain these contributions by building on a line of research modeling the trade-off between

discipline and discretion in the design of a fiscal rule (Amador, Werning, and Angeletos (2006),

Halac and Yared (2014, 2022a, 2023)). Consider a small open economy whose government decides

how much to spend in response to shocks to the country’s fiscal needs. Suppose that while the

government and the society agree on the need for discretion to respond to the shocks, they

disagree on the relative value between present and future public spending. In particular, the

government is shortsighted in the sense that it overvalues current spending. The shortsightedness

captures, in a reduced form, the incentive to overborrow on the part of the government due to

various reasons: political turnover (Alesina and Passalacqua (2016) offer a survey), heterogeneity

in discounting among members of the society (Jackson and Yariv (2014, 2015)), or, for members

of an economic union, the common pool problem caused by a common monetary authority that

lacks the ability to commit (Beetsma and Uhlig (1999), Chari and Kehoe (2007), and Aguiar,

Amador, Farhi, and Gopinath (2015)). The combination of shocks and a present-biased objective

calls for both discretion and discipline. Lastly, a trade-off between discretion and discipline arises

because the realization of the shock to fiscal needs is private information to the government,

which implies that the prescription of the fiscal rule cannot be contingent upon the shock. I

follow Halac and Yared (2022) in modeling a fiscal rule as a penalty schedule, which is a function

of the government’s choice.

The departure from the standard framework is that the cost of meting out a penalty on the

government is borne asymmetrically by the government and the society. The problem of designing

a fiscal rule maps to a mechanism design problem without transfers but with asymmetric “money

burning,” where money burning refers to a penalty that is meted out. The principal—here, the

society—designs a penalty schedule to delegate the choice of fiscal policy to the agent—here, the

government. While the literature has used either the first-order approach or global Lagrangian

methods to solve similar problems, I show that the two methods complement one another. To

start, I use insights from the standard first-order approach as a guide to guess a partial solution
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from locally optimal incentives.

The challenge, then, is to go from locally optimal incentives to global optimality. A commonly

used approach in the literature consists of showing that, for any alternative to the optimal

mechanism, there exists a valid perturbation that increases welfare. For mechanisms with money

burning, however, the constraint on transfers makes this task particularly challenging (see the

discussion in Athey, Atkeson, and Kehoe (2005), Ambrus and Egorov (2017), and Halac and

Yared (2022)). To overcome this challenge, I use the powerful yet less commonly used global

Lagrangian methods to obtain a guess for a full solution and determine the conditions under

which the guess is indeed a solution. Because the Lagrangian accounts for the constraint on

transfers, it suffices to study valid perturbations of the Lagrangian (see Appendix B for the global

Lagrangian methods based on Luenberger (1969), Amador, Werning, and Angeletos (2006), and

Amador and Bagwell (2013, 2020)). The upshot is a comprehensive characterization of optimal

fiscal rules depending on easy-to-check and intuitive optimality conditions.

Using the first-order approach, I obtain a closed-form expression for a marginal penalty that

balances the benefit of discipline with the incentive cost of limited discretion. The expression for

the marginal penalty comes from the first-order condition of a triply relaxed problem, in which

the monotonicity condition, the non-negativity constraint on penalties, and the non-negativity

constraint on government spending are set aside. The closed-form expression obtains by rewriting

the first-order condition as a wedge in the Euler equation of the government.

The wedge is the product of two terms with clear economic intuition. One term balances

the need for discipline—measured by the degree of present bias—with the need for discretion—

measured by the thickness of the tail of the distribution of shocks. A second term, which depends

solely on the degree of asymmetry in the cost of meting out penalties, determines society’s

aversion to meting out penalties. As the degree of asymmetry goes to zero, society becomes

infinitely averse to meting out penalties. To avoid meting out penalties while still imposing

discipline, society finds it (locally) optimal to resort to extreme incentives—that is, either no

penalty or prohibitively large penalties. Interestingly, this limiting case echoes the “bang-bang”

result of Halac and Yared (2022). At the polar opposite, the degree of asymmetry is such that the

society is immune to penalties levied on the government, in which case the wedge is reminiscent

of a Pigouvian tax correcting for the present bias of the government.

The main theoretical result shows that, for a broad class of environments with asymmetric
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money burning, a hybrid fiscal rule featuring no penalties below a threshold and a graduated

schedule of penalties conforming with the wedge above the threshold up to a cap on the deficit

is optimal. Two insights emerge from the characterization of the optimal fiscal rule. The first

insight relates to the optimal stringency of the cap. The second insight relates to the optimal

leniency of on-equilibrium penalties on low levels of spending.

The optimal stringency of the cap depends on the balance between the need for discipline and

the need for discretion. As suggested by the first-order approach, the thickness of the tail of the

distribution of shocks to fiscal needs governs the need for discretion. If the tail is sufficiently

thin, large fiscal needs are relatively unlikely, and the optimal fiscal rule imposes a cap on the

deficit. In contrast, if the tail is thick, large fiscal needs are relatively likely, and the optimal

rule does not impose a cap. Moreover, for a sufficiently thick tail, the absence of a fiscal rule is

optimal because the need for discretion outweighs the need for discipline.

The second insight is specific to fiscal rules featuring on-equilibrium penalties. If the first-order

approach suggests relying heavily on on-equilibrium penalties (i.e., the wedge schedule is positive

and implements a monotonically increasing allocation), then it is optimal to exempt low levels of

spending from on-equilibrium penalties. To gain intuition for the exemption, think of the penalty

schedule as a level shifter plus the integral of the marginal penalty schedule. Because penalties

cannot be negative, the level can only be shifted upward, which is undesirable. The exemption

consists of setting the marginal penalty schedule at zero—instead of that conforming with the

wedge—below a threshold as a partial substitute for shifting the level downward. Above the

exemption threshold, however, the marginal penalty schedule conforms with the wedge schedule.

Intuitively, the benefit of the exemption is that it lowers the level of the penalty schedule

above the exemption threshold. It does so while preserving the same marginal penalty schedule,

and hence the same discipline, above the threshold. Below the threshold, however, there is a

loss of discipline. Also, the exemption causes a kink in the penalty schedule, which is in contrast

with the notch (i.e., a jump in level) in the penalty schedule of the Stability and Growth Pact.

The theory indicates that the thickness of the right tail of the distribution of fiscal needs is

a quantifiable measure of the need for discretion and a key input to the design of an optimal

fiscal rule. The task of measuring the need for discretion from government finance data has

two challenges, however. First, fiscal needs are not directly observable. Second, the distribution

of fiscal needs is an infinite dimensional object. A parametric assumption on the distribution
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would, to a large extent, presume the thickness of the tail instead of deducing it from the data

(e.g., irrespectively of its mean and variance, a normal distribution has a thin tail).

In a first step, I use a tractable positive model to infer past fiscal needs from government

finance data. The positive model is a standard model of (government) spending augmented with

taste shocks that may be persistent. The taste shocks capture fiscal needs as a catchall for shocks

to the need for a deficit, irrespectively of whether it originates in a shock to the need for public

spending, a shock to the cost of servicing the debt, or a shock to government revenue, as in the

normative theory. The identification of fiscal needs obtains from inverting the government policy

function to recover the fiscal needs that rationalize the government finance data. A difficulty,

however, is that the policy function depends on the distribution of fiscal needs, which is the object

of interest to be inferred in the second step. Assuming log utility keeps the two-step approach

tractable because I obtain a closed-form expression for the policy function that depends only on

the first moment of the distribution of fiscal needs. As a result, the first step alone delivers the

exact identification of past fiscal needs from government finance data.

In a second step, I infer the thickness of the tail of the distribution of measured fiscal needs.

Because rare events featuring large observations—say, during recessions—are a common feature

of government finance data, I use tools from heavy-tail analysis. Following Gabaix and Ibragimov

(2011), a log-log plot of rank and size of measured spending needs can be used to detect evidence

of a Pareto tail and to measure the thickness of the tail. I adopt a common practice in heavy-

tail analysis by substantiating the analysis with a Hill plot (Resnick (2007), Chapter 4). I

apply the two-step methodology to the case of the European Union and find novel evidence of a

thick (Pareto) tail of the distribution of shocks to fiscal needs. The concluding section contains

suggestions to reform the Stability and Growth Pact.

Related literature. More broadly, the theory relates to the literature on delegation, money

burning, and the design of rules to discipline a policy-making authority to act in the best in-

terest of the society (Holmström (1977), Melumad and Shibano (1991), Alonso and Matoushek

(2008), Kováč and Mylovanov (2009), Athey, Atkeson, and Kehoe (2005), Amador, Werning, and

Angeletos (2006), Ambrus and Egorov (2013, 2017), Amador and Bagwell (2013, 2020, 2022),

Clayton and Schaab (2022), and Halac and Yared (2014, 2020a, 2020b, 2022a, 2022b, 2023)).

The contribution of this paper is threefold. First, it contains a near-complete characterization of
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the optimal delegation contract with asymmetric money burning in a model with a multiplicative

bias (Appendix A.1 considers the quadratic model with additive bias). Second, the analysis in

this paper blends insights from the first-order approach, reminiscent of Diamond (1998)’s ABC

formula, to obtain easy-to-check and intuitive optimality conditions from the global Lagrangian

methods. The optimality conditions elicit the central role of the thickness of the tail of the

distribution of shocks for the optimal balance between the needs for discipline and discretion.

Third, this paper takes a first step toward a quantitative application of the rich theory on the

trade-off between discipline and discretion in the design of fiscal rules on deficits. The quantitative

literature on fiscal rules has, so far, focused on inefficient debt levels—for example, as a result

of the possibility of default (see, e.g., Azzimonti, Battaglini, and Coate (2016), Hatchondo,

Martinez, and Roch (2020), Alfaro and Kanczuk (2019), and Aguiar, Amador, and Fourakis

(2020); an exception is Bassetto and Sargent (2006)). Felli, Piguillem, and Shi (2021) show that

the risk of default makes it optimal to introduce a default rule.

Because a Pigouvian tax is a price regulation and a cap is a quantity regulation, this paper

also contributes to the literature on the choice of regulatory instrument. In an influential con-

tribution, Weitzman (1974) finds that the relative curvature of the benefit and cost functions

of economic activity determines whether fixing the price or fixing the quantity is preferable.2

Perhaps surprisingly, the distribution of shocks does not affect the ranking of these two simple

instruments. Allowing for a richer set of instruments, as I do in this paper, reveals the role of

the distribution of shocks: a thick tail of the distribution of shocks calls for discretion, which

favors on-equilibrium penalties.

1 Model

This section introduces a standard model used to analyze the design of a fiscal rule and relaxes

the assumption of symmetry in the cost of burning money (Amador, Werning, and Angeletos

(2006), Halac and Yared (2014, 2022a)).

2For instance, the consensus in environmental economics is that the marginal benefit curve of abatement

is relatively flat, whereas the marginal cost curve is steep, which according to Weitzman (1974) favors price

regulation over quantity regulation (see McKibbin Wilcoxen (2002)).
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1.1 Economic environment

Consider a small open economy whose government decides how much to spend and borrow in

response to shocks to the fiscal needs of its society. The government is present biased in the

sense that it discounts the future at a higher rate than its society. The combination of shocks to

fiscal needs and a present-biased objective creates a need for both discretion and discipline.

Formally, the preferences of the government over the allocation of public spending over time

are represented by the objective function

θU(g) + β(W (x)− P (g)), (1)

where θU(·) denotes the utility from government spending g ≥ 0, and the continuation value

W (·) is a function of future assets x ∈ R.3 Both U and W are twice continuously differentiable

and strictly increasing. The index U is strictly concave and satisfies Inada conditions, and the

index W is concave. Shocks to the country’s fiscal needs, denoted θ, are private information to

the government. The shocks follow a distribution F whose support is an interval Θ with lower

bound θ > 0 and supremum θ̄ > θ.4 Although the supremum can be infinite, the first moment

is assumed to be finite. The distribution F is twice continuously differentiable with density f .

The tail of the distribution refers to 1− F .

The degree of present bias of the government is 1− β ∈ (0, 1], and, to simplify the notation,

the discount factor of the society is subsumed into the continuation value. A fiscal rule is a

penalty schedule P (·) that is non-negative, P (g) ≥ 0 for g ≥ 0.

The government’s budget constraint is g+ x = T, where T > 0 denotes government revenues.

For simplicity, the gross interest rate is exogenous and normalized to one. Substituting the

budget constraint into the objective of the government (1) gives the government’s problem

g(θ) ∈ arg max
g≥0

θU(g) + β(W (T − g)− P (g)). (2)

In contrast, the society’s objective is not present biased, and, from an ex ante perspective,∫
Θ

[θU(g(θ)) +W (T − g(θ))− ρP (g(θ))] dF (θ), (3)

3Amador, Werning, and Angeletos (2006) show that the results apply to a multi-period environment with iid

shocks. Halac and Yared (2014) study an infinite horizon environment with persistent shocks.
4Shocks to government revenues map to shocks to fiscal needs with a CARA utility index (see Section 5.4 of

Amador, Werning, and Angeletos (2006)).
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where 1− ρ denotes the asymmetry in the cost of penalties for the economic union. This paper

covers the full spectrum of the degrees of asymmetry in the cost of the penalties, ρ ∈ [0, 1]. At

one end of the spectrum (i.e., ρ = 0), the society is immune to the penalties on the government.

At the other end of the spectrum (i.e., ρ = 1), penalties symmetrically affect the government

and the society.5 For ρ ∈ (0, 1), an on-equilibrium penalty mutually affects the society and the

government, albeit asymmetrically.

Formally, the design of a fiscal rule consists of determining a penalty schedule P (·) ≥ 0 to

maximize society’s welfare (3) subject to the implementability constraint (2).

Economic union. Note that the analysis in this paper applies, at the cost of additional nota-

tion, to the design of a fiscal rule for an economic union that is not fiscally integrated. Appendix

A.2 contains the additional notation needed for an economic union and the mapping to the envi-

ronment of this section. In short, because the lack of fiscal integration limits the use of transfers

between countries, the key trade-off remains between discretion and discipline—separately from

insurance.6

Some useful definitions. An allocation is a contingent plan for government spending g(·)

with g(θ) ≥ 0 for θ ∈ Θ. A fiscal rule P (·) implements an allocation g(·) if for θ ∈ Θ, g(θ) solves

the government’s problem (2). Consider a rule P (·) and the allocation it implements g(·). A

strictly positive penalty on g is on-equilibrium if there exists θ ∈ Θ such that, if θ realizes, the

penalty is meted out (i.e., g(θ) = g). Otherwise, the penalty is off-equilibrium. Let gd denote the

discretionary allocation, which is the allocation that solves the government problem (2) in the

absence of a fiscal rule. Define the wedge ∆ in the Euler equation of the government as follows:

(1−∆(g, θ))θU ′(g) = βW ′(T −g). The wedge allows us to read the discipline imposed by a fiscal

rule off the allocation it implements. The wedge evaluated at the discretionary allocation is

∆(gd(θ), θ) = 0. A rule that constrains the government to spend less (i.e., g(θ) ≤ gd(θ)) induces

a positive wedge.

5The economic environment with ρ = 1 nests the model in Amador, Werning, and Angeletos (2006) and the

model in Halac and Yared (2022a) without an upper bound on punishments (i.e., with unlimited enforcement).
6Harstad (2007) provides a rationale for limits on transfers to curb the incentive of members to strategically

delay reaching an agreement while bargaining over the design of a common rule.
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1.2 Designing a mechanism with asymmetric “money burning”

The optimal design of a fiscal rule maps to a mechanism design problem without transfers but

with money burning. Using the revelation principle, the composition of the penalty schedule

and the allocation gives the money-burning schedule t(θ) = P (g(θ)) for θ ∈ Θ. Note that on-

equilibrium penalties impose discipline at the cost of “burning money,” whereas off-equilibrium

penalties do not “burn money.”

Incentive compatibility constraints guarantee the implementability of the allocation as in (2).

An allocation g(·) is incentive compatible given a money-burning schedule t(·) if

θU(g(θ)) + β (W (T − g(θ))− t(θ)) ≥ θU(g(θ̂)) + β
(
W (T − g(θ̂))− t(θ̂)

)
, for θ, θ̂ ∈ Θ. (IC)

A fiscal rule is optimal if the allocation it implements g(·) and the associated schedule t(·) solve

max
g(·), t(·)

{∫
Θ

[
θU(g(θ)) +W (T − g(θ))− ρt(θ)

]
dF (θ)

∣∣ (IC) and t(θ) ≥ 0 for θ ∈ Θ

}
. (4)

The intercept of the schedule, if left implicit, is t(θ) = 0 and P (g) = 0 for g ≤ g(θ).

The non-negativity constraint on money burning sets program (4) apart from the design of

a mechanism with transfers because it rules out cross-subsidization across types.7 The solution

method exploits powerful Lagrangian techniques to allow for the non-negativity constraint on

money burning (Section B of the Appendix contains a description of the solution method).

2 On the balance between discipline and discretion

In this section, I use the first-order approach to analyze the economics of on-equilibrium penal-

ties. I first study a relaxed problem and then explore the conditions under which the relaxed

constraints may be binding. The first-order approach provides an analytical formula for the

(locally) optimal balance between the competing needs for discipline and discretion.

The following standard result exploits the incentive compatibility constraints to characterize,

for a given intercept t(θ), the money-burning schedule associated with a non-decreasing allocation

(Myerson (1981)). The proof is in Appendix C.1.

7Atkeson and Lucas (1992) study the case with transfers but without present bias, and Galperti (2015) studies

the case with transfers and present bias.
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Lemma 1 (Incentive compatible allocations). An allocation g(·) is incentive compatible given a

money-burning schedule t(·) if and only if g(·) is non-decreasing and

t(θ) = t(θ) +
θ

β
U(g(θ)) +W (T − g(θ))− θ

β
U(g(θ))−W (T − g(θ))− 1

β

∫ θ

θ

U(g(θ̃)) dθ̃. (5)

Lemma 1 is useful in substituting the money-burning schedule with a function of the allocation

in the objective of program (4). The resulting objective functional reads as follows:∫
Θ

[
(1− β)W (T − g(θ)) + (1− ρ

β
) (θU(g(θ)) + βW (T − g(θ))) + ρ

β
1−F (θ)
f(θ)

U(g(θ))
]
dF (θ) (6)

− ρ
β

(
t(θ)− θ U(g(θ))− βW (T − g(θ))

)
.

The first-order approach in this context consists of maximizing the objective (6) point-wise

for θ > θ while ignoring three constraints (the usual monotonicity condition, the non-negativity

constraint on money burning, and the non-negativity constraint on spending). Rearranging the

first-order condition to express it as a wedge suggests the following definition.

Definition (foa-wedge). Let ρ ∈ [0, 1). Define the foa-wedge as follows:

∆n(θ) =
1

1− ρ

(
(1− β)− ρ1− F (θ)

θf(θ)

)
. (7)

The foa-wedge is the product of a scaling factor and a term capturing the key trade-off for on-

equilibrium penalties. The scaling factor captures society’s aversion to on-equilibrium penalties.

It is the inverse of the degree of asymmetry in the cost of on-equilibrium penalties and ranges

between 1 and infinity. It takes its smallest value for the largest degree of asymmetry. Indeed,

for ρ = 0, society does not bear any cost associated with on-equilibrium penalties. In contrast,

for symmetric penalties (i.e., ρ = 1), society is infinitely averse to on-equilibrium penalties, and

only the sign of the term in parentheses matters.8

The term in parentheses in (7) balances the benefit and cost of imposing discipline with

on-equilibrium penalties. The benefit of discipline is simply captured by 1 − β. The term

ρ1−F (θ)
f(θ)

captures the incentive cost of a marginal (on-equilibrium) penalty. To be compatible

with incentives, on-equilibrium penalties are cumulative in the sense that a marginal penalty on

8This intuition echoes the bang-bang result of Halac and Yared (2022a): an optimal rule enforced by symmetric

penalties necessarily relies on extreme—bang-bang—penalties. The foa-wedge (7) generalizes the function Q(θ) =

−(1− β)θf(θ) + 1− F (θ) studied in Halac and Yared (2022a) to study environments with asymmetric penalties.
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spending gn(θ) is borne with weight ρ and probability 1 − F (θ) that the fiscal needs are above

θ. For ρ > 0 and a Pareto distribution with tail parameter γ, the foa-wedge is constant because

1−F (θ)
θf(θ)

= 1
γ
. For ρ = 0, the foa-wedge is also constant and equal to the degree of present bias,

which is reminiscent of a Pigouvian tax aligning the government’s incentives with the society’s

objective.

Proposition 1 (Optimal fiscal rule: Pigouvian benchmark). Suppose that ρ = 0. An optimal

fiscal rule implements the first-best allocation gfb defined by the constant wedge ∆(gfb(θ), θ) =

1− β.

Unlike the other propositions in this paper, this proposition follows from first principles.

Without concern for the societal cost of meting out a penalty on the government, it suffices to

verify that the first-best allocation is compatible with incentives and that the associated penalty

schedule satisfies the non-negativity constraint on penalties. The first-best allocation, which

satisfies society’s Euler equation θU ′(gfb(θ)) = W ′(T − gfb(θ)) for θ ∈ Θ, is increasing and hence

compatible with incentives. The marginal penalty is strictly positive for g ≥ gfb(θ), and for

g < gfb(θ), P (g) = 0.

Three constraints are relaxed in the first-order approach: the non-negativity constraint on gov-

ernment spending, the non-negativity constraint on penalties, and the monotonicity constraint.

First, I use restrictions that the two non-negativity constraints place on the level of the foa-

wedge to define three different degrees of present bias (relative to the incentive cost) depending

on whether the foa-wedge is bigger than 1, smaller than 0, or in between 0 and 1.

The foa-wedge is bigger than 1, which is incompatible with non-negative public spending, if

the degree of present bias is high in the sense that Assumption H holds.

Assumption H. ρ1−F (θ)
θf(θ)

≤ ρ− β for θ ∈ Θ.

If Assumption H is not satisfied at θ, denote by gn(θ) the spending associated with the foa-

wedge (i.e., ∆(gn(θ), θ) = ∆n(θ)).

The degree of present bias is low at θ if the foa-wedge is smaller than 0, which is the case

under the following assumption.

Assumption L. 1− β ≤ ρ1−F (θ)
θf(θ)

.
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If Assumption L is not satisfied at θ, then the foa-wedge is positive and gn(θ) < gd(θ). If the

degree of present bias is neither high nor low at θ, then it is intermediate at θ.

Assumption I. ρ− β < ρ1−F (θ)
θf(θ)

< 1− β.

Assumption I implies that the foa-wedge is in between 0 and 1 at θ.

The monotonicity constraint places restrictions on the slope of the foa-wedge, which I use to

define the (virtual) need for discretion. The following measure of the slope of an allocation g is

indicative of the discretion granted at g(θ): d
dθ
θ(1 − ∆(g(θ), θ)) 1

β
. For instance, implementing

the first-best allocation grants constant discretion 1, which is lower than the constant discretion

1/β associated with the discretionary allocation. Following Myerson (1981), the term virtual

qualifies a concept augmented by the incentive cost. I define the (virtual) need for discretion as

the discretion granted by the foa-wedge as follows: d
dθ
θ(1−∆n(θ)) 1

β
. The foa-wedge reveals that

the slope of the inverse hazard rate governs the (virtual) need for discretion (need for discretion

for short).

Lemma 2 (Monotonicity and the need for discretion). Suppose that gn(θ) is well-defined for

θ ∈ (θ∗, θ∗). Then, gn is non-decreasing at θ ∈ (θ∗, θ∗) if and only if the derivative of ρ1−F (θ)
f(θ)

is

not smaller than ρ− β.

Appendix C.2 contains the proof. Lemma 2 shows that for on-equilibrium penalties to be part

of a fiscal rule, the tail of the distribution of fiscal needs must be sufficiently thick, as measured

by the slope of the inverse hazard rate. The threshold for the thickness of the tail depends on

the degree of asymmetry and the degree of present bias. For ρ = 0, the threshold is trivially

satisfied independently of the degree of present bias. For ρ = β, it suffices to check whether

the inverse hazard rate is non-decreasing, which is the case if and only if 1 − F is log-convex.

For instance, for ρ = β, the foa-wedge is a valid building block of an optimal fiscal rule for

Pareto-distributed fiscal needs, not for normally distributed fiscal needs. Intuitively, the thick

tail associated with Pareto-distributed fiscal needs calls for a blend of discretion and discipline

that only on-equilibrium penalties can achieve. The (virtual) need for discretion is high at θ if

the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ− β.
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3 Optimal fiscal rules

This section contains the main theoretical results. The analysis is in three parts covering the

cases of a low, an intermediate, and a high degree of present bias of the government. The insights

from the previous section help conjecture the optimal fiscal rules. The optimality conditions of

the global Lagrangian method then determine the features of the environment under which the

conjecture is indeed a solution.

First, I propose a general fiscal rule featuring no penalty below a threshold and a graduated

schedule of penalties from the threshold up to a point at which the marginal penalty jumps

sufficiently to implement a cap. The penalty schedule is best described by the marginal penalty

schedule because it is more telling of the discipline imposed (and the intercept set to P (0) = 0),

P ′(g) =


0 for g < gn,

U ′(g)∆(g)/β for g ∈ [gn, gp),

∞ for g ≥ gp,

(8)

where ∆(·) > 0, gn, and gp remain to be determined. The infinite marginal penalty reflects the

assumption of unlimited enforcement (see Halac and Yared (2022) for the implications of limited

enforcement). If θ̄ <∞, then the marginal penalty needed to enforce a cap at g would be finite.

The fiscal rule (8) encompasses various cases observed in practice. First, the absence of a

fiscal rule amounts to gn = gp =∞. Second, for gn = gp <∞, (8) amounts to a cap on spending.

Third, for gn < gp = ∞, (8) can account for a graduated schedule of on-equilibrium penalties

resembling a Pigouvian tax. Last, for gn < gp <∞, (8) accounts for hybrid fiscal rules featuring

a graduated schedule of on-equilibrium penalties up to a cap.

In the spirit of the revelation principle, the remainder of the analysis characterizes an optimal

allocation from which an optimal fiscal rule can be inferred. For instance, an allocation with

no bunching below the cap indicates that the marginal penalty schedule is continuous at gn.

In contrast, an allocation with bunching below gn indicates a jump in the marginal penalty

schedule (resulting in a kink in the penalty schedule). Starting with a continuous marginal

penalty schedule up to a cap, define the discretion, on-equilibrium, and off-equilibrium penalties
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allocation as follows for θ ∈ Θ:

g(θ) =


gd(θ) for θ < θn,

gn(θ) for θ ∈ [θn, θp],

gn(θp) for θ > θp,

(9)

where θn < θp. The fiscal needs θn and θp parametrize the threshold gn and gp, where the

subscript n refers to on-equilibrium penalties above gn and p refers to the prohibitive nature of

off-equilibrium penalties above gp. The allocation (9) is a partial guess for a solution because

gn(θ) denotes the level of public spending dictated by the foa-wedge. To complete the guess, it

only remains to set the thresholds θn and θp.

To set the cap, I use a first-order condition of the Lagrangian method, given an allocation g,9

θp = inf
{
θ̃p ∈ Θ | Inequality (10) holds for θ̂ ≥ θ̃p

}
,

∫ θ̄

θ̂

θ
(

∆(g(θ̃p), θ)− (1− β)
)

dF (θ) ≤ ρ θ̂∆(g(θ̃p), θ̂)(1− F (θ̂)). (10)

The continuum of inequalities in the definition of θp are notoriously challenging to interpret,

and the task of identifying θp may seem daunting. Below, I show that the first-order conditions

used to set θp encapsulate two distinct optimality requirements, each with a compelling economic

intuition.10 The upshot of breaking down the definition into these two requirements is a two-step

procedure that makes identifying θp a simple task.

Set θn at the lowest fiscal need such that gn is well-defined and associated with a non-negative

marginal penalty:

θn = inf
{
θ̃n ∈ Θ

∣∣ Assumption I holds for θ ∈ (θ̃n, θp)
}
.

If Assumption I holds for θ ∈ Θ, that is, 0 < gn(θ) ≤ gd(θ) for θ ∈ Θ, then θn = θ. If Assumption

I holds for a non-empty subset in the interior of [θ, θp], then θn ∈ (θ, θp). The continuity of both

F and f implies that the threshold satisfies gn(θn) = gd(θn) if the upper bound in Assumption

I binds, which is the relevant case.11 Lastly, if Assumption I does not hold for any θ, the set in

9To focus on the economic intuition, I postpone describing the solution method to Appendix B.
10To relate this contribution to the literature, note that for ρ = 1, the definition of θp corresponds to the

condition in Proposition 2 in Amador, Werning, and Angeletos (2006).
11If the lower bound in Assumption I binds instead, then limθ→θn gn(θ) = 0.
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the definition of θn is empty, and then θn = θ̄. For instance, if shocks are Pareto distributed,

1 − F (θ) = θ−γ, and the elasticity of the tail γ ∈ (1, ρ
1−β ), then the need for discretion is such

that the candidate solution does not feature penalties since θn = θ̄.

If the allocation (9) is optimal and θn < θp, then I say that the optimal fiscal rule features a

graduated schedule of on-equilibrium penalties and a cap. The cap binds if θp < θ̄.

3.1 Low degree of present bias

This section contains the first main result of this paper and a computed example.

Since Amador, Werning, and Angeletos (2006), a lower bound on the elasticity of the density

of the distribution of shocks has been understood to imply that granting discretion below a

threshold is optimal for symmetric penalties. For asymmetric penalties (i.e. ρ < 1), the lower

bound is more stringent.

Assumption sL. θf ′(θ)
f(θ)
≥ −1+ρ−β

1−β .

Below, I show that, in the context of the next proposition, Assumption sL implies a low degree

of present bias, as in Assumption L.

3.1.1 High need for discretion

If the degree of present bias is low relative to the incentive cost of discipline for fiscal needs below

a threshold and the need for discretion is high for an intermediate range of fiscal needs, then a

hybrid fiscal rule is optimal.

Proposition 2 (Optimal fiscal rule: low degree of present bias and high but decreasing need

for discretion). Suppose θ < θn and Assumption sL holds for θ ≤ θn. If the derivative of ρ1−F
f

is not smaller than ρ − β for θ ∈ [θn, θp], then a fiscal rule that implements the discretion,

on-equilibrium, and off-equilibrium penalties allocation is optimal.

The proof is in Appendix C.3. The optimal fiscal rule has three parts. A computed example

depicts the three parts and serves as a visual aid to the following discussion.

Discretion. A first part grants discretion below gd(θn) because, as the next lemma shows,

Assumption sL implies a low degree of present bias relative to the incentive cost of discipline.
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Lemma 3 (Implications of Assumption sL). If θn ∈ (θ, θ̄) and Assumption sL holds for θ ≤ θn,

then 1− β ≤ ρ1−F (θ)
θf(θ)

for θ ≤ θn.

The proof is in Appendix C.4. Lemma 3 shows that the optimal fiscal rule grants discretion

below gd(θn) because the incentive cost of discipline is too high. Discipline is so costly below θn

that the foa-wedge is negative.

On-equilibrium penalties. A second part of the optimal fiscal rule imposes on-equilibrium

penalties on spending between gd(θn) and gn(θp) if the (virtual) need for discretion is sufficiently

high to justify burning money by imposing a graduated schedule of on-equilibrium penalties. If

gn is decreasing over a subinterval of [θn, θp], the solution would be to “iron” gn, as in Myerson

(1981). Ironing the allocation requires a jump in the marginal penalty instead of a continuous

schedule of marginal penalties. The marginal penalty schedule jumps at gn(θp) precisely for this

reason, which relates to the cap.

Cap. A third part of an optimal fiscal rule imposes off-equilibrium penalties above gn(θp). To

gain intuition and simplify the task of determining θp, I decompose the definition of θp into two

distinct optimality requirements. Note that inequality (10) is a function of two thresholds: θ̃p

identifies the threshold at which public spending bunches, and θ̂ determines the range over which

the bunching is evaluated. The first requirement equates the marginal benefit to the marginal

cost of the cap. It consists of identifying the set of fiscal needs at which the inequality is satisfied

with equality for θ̂ = θ̃p. Indeed, if the infimum is in the interior of Θ, a continuity argument

implies that the inequality holds with equality at the infimum. This first requirement usually

simplifies the identification of θp considerably because it suffices to find the root of an equation.

The second requirement checks that off-equilibrium penalties dominate on-equilibrium penalties

above g(θ̃p). It asks to check that the inequality (10) holds for θ̂ ≥ θ̃p.

The first requirement, that is, inequality (10) holding with equality for θ̂ = θ̃p > θ, determines

the stringency of the cap as a root of the following equation:∫ θ̄

θ̃p

θ
(

∆(g(θ̃p), θ)− (1− β)
)

dF (θ) = ρ θ̃p∆(g(θ̃p), θ̃p)(1− F (θ̃p)).

It sets the cap to equate the average distortion at the top on the left-hand side to the marginal

reduction in the burden of on-equilibrium penalties on the right-hand side. On the left-hand side,
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the difference between the wedge and the degree of present bias measures the distortion relative

to the first best, and the integral takes a weighted average with the fiscal needs as the weights.

On the right-hand side, the burden of on-equilibrium penalties depends on whether the fiscal rule

features on-equilibrium penalties. For a rule that does not feature on-equilibrium penalties, the

right-hand side is null because the wedge is null. Then the cap is such that there is no distortion

at the top on average. If, instead, the cap comes on top of on-equilibrium penalties, then the

right-hand side is positive. The cap equates the average distortion at the top on the left-hand side

to the marginal benefit of not imposing the marginal penalty at g(θ̃p) with probability 1−F (θ̃p).

The second requirement, that is, inequality (10) holding for θ̂ ≥ θ̃p, determines the structure

of the fiscal rule above g(θ̃p). It ensures that off-equilibrium penalties above g(θ̃p) dominate

on-equilibrium penalties at the margin. At any point θ̂ ≥ θ̃p, the mechanism designer has the

choice to prolong the bunching of public spending or offer an alternative while preserving the

bunching of public spending between θ̃p and θ̂ (see Figure 1). On the left-hand side of inequality

(10), the marginal cost of prolonging the bunching of public spending is the loss of discretion

net of the marginal benefit of discipline at θ̂. The wedge captures the loss of discretion, and the

degree of present bias captures the marginal benefit discipline. A kink in the penalty schedule

preserves the bunching of public spending at g(θ̃p) between θp and θ̂, but not beyond θ̂. The kink

is caused by a jump in the marginal penalty schedule from zero to θ̂∆(gd(θ̃p), θ̂)U
′(gd(θ̃p)), and

the government would choose to incur the marginal penalty with probability 1− F (θ̂). In sum,

for θ̂ ≥ θ̃p, inequality (10) verifies that the marginal cost net of the marginal benefit of enforcing

the cap at θ̂ is lower than the marginal cost of resorting to on-equilibrium penalties.

The second requirement is easy to check directly from three fundamentals of the economy,

namely, the degree of present bias, the degree of asymmetry in the cost of on-equilibrium penal-

ties, and the conditional tail expectation of the distribution of shocks. The next lemma shows

that the second requirement is equivalent to an upper bound on the thickness of the tail of the

distribution of shocks.

Lemma 4 (Cap and 1 − F ). Suppose that inequality (10) holds with equality for some θ̃p < θ̄

and θ̂ = θ̃p. Then, inequality (10) holds for θ̂ ∈ [θ̃p, θ̄) if and only if

βE[θ|θ ≥ θ̂]− ρθ̂ ≤ βE[θ|θ ≥ θ̃p]− ρθ̃p.

Appendix C.5 contains the proof. Lemma 4 shows that, according to the first-order condition
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Figure 1: On the continuum of inequalities in the definition of the thresholds θp and θx.

Notes: The grey line depicts the discretionary allocation. The black line depicts an allocation g implemented by a fiscal rule that

starts with a kink at g(θx) and a graduated schedule of on-equilibrium penalties up to g(θp) and above which penalties are

prohibitively large to implement a cap. The dashed line depicts an alternative to the cap. To implement the alternative, the fiscal

rule resorts to on-equilibrium penalties after a kink at g(θ̂). To implement the alternative, the fiscal rule features a graduated

schedule of on-equilibrium penalties between g(θ) and g(θp) within which there is a kink at g(θx).

defining θp, a cap is desirable if the distribution of shocks is thin enough, and no cap is optimal

otherwise. As in Weitzman (1974), the difference between the slope of the marginal benefit of

discipline, governed by β, and the slope of the marginal cost of discipline, governed by ρ, matters

for the choice of instrument (i.e., a binding cap or no cap). Lemma 4 highlights the importance

of the distribution of shocks for the choice of instruments. For a sufficiently thin tail, the need for

discretion is sufficiently low that a cap dominates on-equilibrium penalties above a threshold. For

instance, for ρ = β < 1 and a log-concave tail, the optimal cap is binding and set to satisfy the

equality condition of the first requirement (by Lemma 4, the log-concavity of 1− F implies the

second requirement). In contrast, for ρ = β and a strictly log-convex tail, the second requirement

is not satisfied for an interior threshold, and θp is either θ or θ̄.

How does the extent of discretion granted by the cap, determined by θp, depend on the degree

of present bias of the government and the degree of asymmetry in the cost of penalties? Lemma

4 already gives a partial answer. If the tail of the distribution of shocks is sufficiently thick, then

θp ∈ {θ, θ̄}, which does not change with a marginal change in β or ρ. Suppose instead that θp is

in the interior of Θ.

Corollary 1 (The cap, β, and ρ). The threshold for the cap θp is weakly increasing in β and

weakly decreasing in ρ.
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The proof is in Appendix C.6. Intuitively, β governs the benefit of discipline, and ρ governs the

cost of granting discretion with on-equilibrium penalties. A subtlety of the corollary, however,

arises for a cap on top of a graduated schedule of on-equilibrium penalties because β and ρ affect

the foa-wedge. Recall that the cap is set such that there is no distortion, on average, over the

bunching induced by the cap. While a lower β exacerbates the average distortion, it also increases

the severity of the on-equilibrium penalty. Corollary 1 shows that β has a stronger effect on the

average distortion above the cap than it has on the marginal on-equilibrium penalty below the

cap. Similarly, more symmetric penalties (i.e., higher ρ) induce less discretion (i.e., lower θp)

as a result of the balance between two forces. A higher ρ increases the benefit of resorting to

a cap instead of on-equilibrium penalties. A higher ρ, however, may also lower the severity of

on-equilibrium penalties, which lowers the benefit of resorting to a cap. The corollary shows

that the former effect dominates, and hence, the optimal cap grants less discretion with more

symmetric penalties.

Example (Low degree of present bias and a high but decreasing need for discretion). Suppose

U(g) = ln(g) and W (x) = ln(ω + x). The government revenues T are normalized to 1. The

parameter ω = 1 sets the average deficit as a percentage of fiscal revenues to 12% in the absence

of a fiscal rule.12 For simplicity, suppose ρ = β so that the derivative of ρ1−F
f

is not smaller

than ρ − β if and only if 1 − F is log-convex. Suppose β = 0.8. Define the distribution of

shocks Fa by its hazard rate, which is a convex combination of the hazard rates of the exponential

distribution and the Pareto distribution,13 ha(θ) = aλ + (1 − a)γ
θ
, and a ∈ (0, 1). The inverse

hazard rate of the distribution Fa implies a positive but decreasing virtual need for discretion. In

turn, this implies a marginal penalty schedule from the foa-wedge that is increasing in severity,

which induces a widening gap between the discretionary allocation and the allocation associated

with the foa-wedge in the right panel of Figure 2. To obtain a distribution that is log-convex below

a threshold and log-cancave above the threshold, it suffices to truncate a log-convex distribution.

For ease of comparison, the parameters of the truncated version of Fa are kept the same as the

12The choice is based on data for the euro area. The average deficit for the three years prior to the implemen-

tation of the Stability and Growth Pact was 4.9% of GDP (Source: OECD (2021), General government deficit).

Fiscal revenues averaged 40.8% of GDP (Source: Eurostat (gov 10a taxag)). Combining these two moments gives

a target average deficit as a percentage of fiscal revenues of 4.9%/40.8% = 12%.

13The hazard rate ha(·) uniquely characterizes the distribution Fa(θ) = 1− exp
(
−
∫ θ
θ
ha(x)dx

)
for θ ∈ Θ.
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ones for its non-truncated counterpart.14 Figure 2 depicts the optimal allocations in black to

illustrate Proposition 2 and Lemma 4.
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Truncated Fa with a = 0.375
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Figure 2: Low degree of present bias and high but decreasing need for discretion.

Notes: The grey line depicts the discretionary allocation. The dashed line depicts the allocation gn associated with the marginal

penalty schedule induced by the foa-wedge. The black line depicts the allocation implemented by the optimal fiscal rule. The

distribution of fiscal needs is displayed at the top right of each panel. In the right panel, θp = θ̄ =∞.

The order of θn and θp depends on the distribution of shocks. For ρ = β and a strictly log-

convex tail, the need for discretion is such that θn ≤ θp, as in the example above. However,

θp ≤ θn for ρ = β and a strictly log-concave tail (indicating a low need for discretion).

3.1.2 Low need for discretion

Lemma 4 showed that for a sufficiently thick tail, the optimal fiscal rule does not feature a cap.

In this section, I show that for a sufficiently thin tail, a main insight from the literature extends

to asymmetric penalties. For ρ < 1, under more stringent conditions than those found in the

literature (i.e., for ρ = 1), the optimal fiscal rule imposes a cap only on public spending.

Definition. The discretion and off-equilibrium penalties allocation, denoted gpd(·), is defined as

follows for θ ∈ Θ:

g(θ) =

 gd(θp) for θ > θp

gd(θ) for θ ≤ θp.

14Truncating the Pareto and Fa distributions at θ̄ = 3 does not significantly alter the mean.

21



Proposition 3 (Optimal fiscal rule: low degree of present bias and low need for discretion).

Suppose θ < θp and Assumption sL holds for θ ≤ θp. A fiscal rule that implements the discretion

and off-equilibrium penalties allocation is optimal.

The proof is in Appendix C.7. For symmetric penalties ρ = 1, the proposition nests Proposi-

tion 3 in Amador, Werning, and Angeletos (2006). The proposition holds for degrees of asymme-

try in the cost of penalties that are not too strong. In particular, the following lemma shows that

the assumption of Proposition 3 cannot hold for the extreme case ρ = 0, which is consistent with

the previous finding that, for ρ = 0, the optimal fiscal rule implements the first-best allocation

with on-equilibrium penalties.

Lemma 5. If θp ∈ (θ, θ̄) and Assumption sL holds for θ ≤ θp, then 1− β ≤ ρ1−F (θ)
θf(θ)

for θ ≤ θp.

Appendix C.4 contains the proof. Lemma 5 is the analog of Lemma 3 for fiscal rules that do

not feature on-equilibrium penalties: again, under the conditions in Proposition 3, the optimal

fiscal rule grants discretion below the cap because the degree of present bias is low relative to

the incentive cost. The optimal cap may not bind, however, in which case it may be optimal to

not impose any discipline.

Corollary 2 (Optimal fiscal rule: low degree of present bias). Suppose that Assumption L holds

at θ and Assumption sL holds for θ ∈ Θ. Then Assumption L holds for θ ∈ Θ and the absence

of a fiscal rule is optimal.

The condition is trivially satisfied if 1 − β = 0. It is also satisfied for a sufficiently thick

tail of the distribution of shocks relative to the degree of present bias—for example, a Pareto

distribution with tail parameter γ and 1 − β ≤ ρ 1
γ
.15 For 1 − β > 0 and a distribution on a

compact support, however, Assumption L cannot be satisfied at θ̄.16

15This formalizes and extends an observation in footnote 6 in Amador, Werning, and Angeletos (2006) to

asymmetric money burning and to a broader class of distributions relative to Pareto.
16This is reminiscent of the “no distortion at the top” in optimal mechanisms with transfers such as redistributive

taxation. The analog for the design of corrective mechanisms without transfers on a compact type space Θ is

that a cap is binding at the top such that that there is no distortion on average over the bunching induced by the

cap (see Amador, Werning, and Angeletos (2008), Proposition 2, and Ambrus and Egorov (2013), Proposition 3,

for symmetric money burning and this paper for asymmetric money burning).

22



Example (Low degree of present bias and a low need for discretion). The economic environment

is identical to the one in the previous example, with the exception that the distribution of shocks

is exponential with parameter λ = 3. The parameters of the exponential distribution and the

distribution Fa are set so that the two distributions have the same mean. The constant inverse

hazard rate 1/λ of the exponential distribution implies that the virtual need for discretion is null

for ρ = β because 0 = d
dθ

(ρ 1
λ
− (ρ − β)θ), which implies a constant allocation gn (see Figure

3). Proposition 3 applies because 1 − F is log-concave, Assumption sL holds for θ ≤ 1
λ

1
1−β , and

θp < 1.66̄ = 1
λ

1
1−β .
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Figure 3: Low degree of present bias and a low need for discretion.

Notes: The grey line depicts the discretionary allocation. The dashed line, which is horizontal and partly covered by the black line,

depicts the allocation gn associated with the marginal penalty schedule induced by the foa-wedge. The black line depicts the

allocation implemented by the optimal fiscal rule.

3.2 Intermediate degree of present bias

This section contains the second main theoretical result: an optimal fiscal rule may grant an

exemption from on-equilibrium penalties below a threshold to lower the level of penalties above

the threshold.

The previous subsection showed that for a low degree of present bias, to comply with the

non-negativity constraint on penalties, it is optimal to set the marginal penalty to zero instead

of that conforming with the foa-wedge below a threshold (which I refer to as truncating the foa-

wedge schedule). For an intermediate degree of present bias, although the foa-wedge is positive,
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it may still be optimal to truncate part of the foa-wedge schedule.

To gain insights into how the non-negativity constraint on penalties matters for the design of

the optimal fiscal rule, decompose the penalty schedule into two building blocks: the intercept

and the marginal penalty schedule. While the marginal penalty schedule determines the extent of

discipline, the intercept determines the overall burden of penalties. The non-negativity constraint

on penalties forces the intercept to be non-negative; hence, the overall burden of penalties can

only be shifted up, which is not desirable. It only leaves us with altering the marginal penalty

schedule to lower the level of on-equilibrium penalties. Because lowering the marginal penalty

on spending g lowers the level of penalties on all spending above g, altering the bottom of the

marginal penalty schedule is the most effective substitute for a negative intercept.

Unlike a negative intercept, however, the truncation entails a loss of discipline because it

grants an exemption from the candidate marginal penalty below a threshold. The exemption

causes a jump in the marginal penalty schedule, and the resulting kink induces the bunching of

government spending at the exemption threshold.

For this section, assume ρ < 1 so that if Assumption I holds at θ, then gn(θ) is well-defined.

For the next definition, suppose that Assumption I holds below θp.

The exemption, on-equilibrium, and off-equilibrium penalties allocation is defined for θ ∈ Θ

as follows:

g(θ) =


gn(θp) for θ > θp

gn(θ) for θx ≤ θ ≤ θp

gn(θx) for θ ≤ θx,

where the θp is defined in (10). For θx, the first-order condition of the Lagrangian method sets

the threshold as the highest fiscal need below which a continuum of inequalities are satisfied:

θx = sup
{
θ̃x ∈ Θ | Inequality (11) holds for θ̂ ≤ θ̃x

}
,

and ∫ θ̂

θ

θ
(

(1− β)−∆(gn(θ̃x), θ))
)
dF (θ) ≤ ρ θ̂∆(gn(θ̃x), θ̂)(1− F (θ̂)). (11)

I discuss the economics of exempting public spending below gn(θx) from penalties in the

context of the next proposition.
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3.2.1 High need for discretion

The next proposition is the second main theoretical result of this paper. For an intermediate

degree of present bias such that gn(θ) < gd(θ) for θ ≤ θp, if an optimal fiscal rule features on-

equilibrium penalties, then it features a kink in the penalty schedule caused by an exemption

from penalties below a threshold.

Proposition 4 (Optimal fiscal rule: intermediate degree of present bias and high need for

discretion). Suppose that Assumption I holds for θ ≤ θp. If the derivative of ρ1−F
f

is not smaller

than ρ− β for θ ∈ [θ, θp], then a fiscal rule that implements the exemption, on-equilibrium, and

off-equilibrium penalties allocation is optimal.

Appendix C.8 contains the proof. Proposition 4 contains one novel insight besides the insight

regarding the balance between the needs for discretion and discipline from Propositions 2 and 3.

The novel insight—the optimality of granting an exemption below a threshold—matters if the

degree of present bias is intermediate even for low realizations of fiscal needs (i.e., θn = θ).

Exemption from penalties below a threshold. To gain intuition and simplify the task

of determining θx, I decompose the definition of θx into two distinct optimality requirements.

Inequality (11) is a function of two thresholds: θ̃x determines the level at which public spending

bunches, and θ̂ determines the range of the bunching. First, by continuity, inequality (11) holds

with equality at θ̂ = θ̃x = θx if θx ∈ (θ, θ̄). Second, inequality (11) holds for θ̂ ≤ θ̃x = θx.

The first requirement determines the leniency of the exemption. It sets θx to equate the

marginal cost to the marginal benefit of the exemption. On the left-hand side of (11), the

marginal cost of the exemption is the average distortion due to the loss of discipline for fiscal

needs below the exemption threshold. On the right-hand side, the marginal benefit is the marginal

reduction in the level of penalties. For θ̂ = θ̃x = θx, the exemption from the marginal penalty

U ′(gn(θx))θx∆n(θx) is beneficial with probability 1− F (θx).

The second requirement determines the structure of the fiscal rule below the threshold. It

checks that for any g ≤ gn(θx), the exemption dominates any alternative. Instead of a zero

marginal penalty below gn(θx), the mechanism designer can impose a marginal penalty that a

government with fiscal needs θ̂ < θx would incur, while preserving the bunching of public spending

between θ̂ and θx (see Figure 4 for an illustration). The marginal cost of such a switch to on-
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equilibrium penalties is the marginal penalty U ′(gn(θx))θ̂∆(gn(θx), θ̂). The marginal benefit is the

discipline from the marginal penalty net of the loss of discretion for governments with fiscal needs

below θ̂. Inequality (11) implies that the marginal benefit of switching from the exemption to

on-equilibrium penalties lies below the marginal cost at any point below the exemption threshold.
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Figure 4: Alternative to an exemption from penalties on spending below g(θx).

Notes: The grey line depicts the discretionary allocation. The black line depicts an allocation implemented by a fiscal rule with no

penalties below a kink at g(θx). The dashed line depicts an alternative to the exemption from penalties below g(θx). A graduated

schedule of on-equilibrium penalties starting at g(θ) and a kink at g(θx) implements the alternative.

The second requirement is easy to check based on fundamentals of the economy. It is equivalent

to a sufficiently thick right tail of the distribution of shocks, which, because it is at the left end

of the range of fiscal needs, may loosely be thought of as a thin left tail.17 As the next lemma

shows, an interior exemption is optimal for a sufficiently “thin left tail,” and no exemption is

optimal otherwise.

Lemma 6 (The exemption and 1−F ). Suppose that inequality (11) holds with equality for some

θ̃x > θ and θ̂ = θ̃x. Then, inequality (11) holds for θ̂ ∈ [θ, θ̃x] if and only if∫ θ̃x

θ̂

[(
ρ1−F (θ)

θf(θ)
− (ρ− β)

)
θ
]
dF (θ) ≤

∫ θ̃x

θ̂

[(
ρ1−F (θ̃x)

θ̃xf(θ̃x)
− (ρ− β)

)
θ̃x

]
dF (θ). (12)

The proof is in Appendix C.9. The intuition for this result relates the thinness of the left tail

of the distribution of shocks to the marginal benefits and costs of an exemption. The inverse

17Although a thick right tail 1 − F is related to a thin left tail F , the two are not equivalent. F log-concave

implies 1 − F log-convex for a decreasing density. For an increasing density, 1 − F log-convex implies F log-

concave. Indeed, for a twice differentiable F , 1− F log-convex is equivalent to d
dθ

F
f ≤

d
dθ

1
f , and F log-concave is

equivalent to d
dθ

F
f ≤ 0.
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hazard rate governs the incentive cost that a marginal penalty on public spending g imposes

on all public spending above g. The benefit of an exemption is to economize on the incentive

cost of the marginal penalties between θ̂ and θx for θ̂ ≤ θx. The thicker is the right tail of

the distribution of shocks between θ̂ and θx for θ̂ ≤ θx, the larger is the benefit. For instance,

for ρ = β, a log-convex 1 − F over [θ, θx] is sufficient for condition (12) to hold. Similarly, for

Pareto-distributed shocks with tail parameter γ, condition (12) simplifies to a lower bound on

the thickness of the right tail ρ 1
γ
≥ ρ− β.

Although the inequality determining the exemption threshold resembles the inequalities deter-

mining the thresholds for the cap, they differ in economic content. The resemblance stems from

the shared origin of these characterizations. Both come from the first-order conditions of the

Lagrangian methods. The economics of the exemption, however, pertain to the non-negativity

constraint on penalties, whereas the economics of the cap pertain to the trade-off between the

need for discretion and the need for discipline.

The degree of leniency implied by the optimal exemption depends on both the government’s

present bias and the asymmetry in the cost of on-equilibrium penalties.

Corollary 3 (The exemption and β). The exemption threshold θx is decreasing in β.

The proof is in Appendix C.10. The intuition is that the marginal benefit of lowering the level

of the penalty above the exemption is larger for a higher degree of present bias. However, the

marginal cost of forgoing discipline due to the exemption is also larger the higher is the degree

of present bias. The corollary shows that the former effect dominates the latter.

In contrast, the effect of ρ on the optimal exemption is ambiguous. Although a higher ρ

implies a higher benefit of an exemption from a given penalty schedule above the exemption, ρ

also affects the foa-wedge.

Example (Intermediate degree of present bias and a high need for discretion). The economy is

identical to the one in the previous examples, with two exceptions. First, β = 0.7 to bring the

degree of present bias from low to intermediate (and ρ also changes to keep ρ = β). Second,

the distribution of shocks is Pareto with parameter γ = 4 to have a thick tail with a constant

elasticity. The parameter for the tail of the Pareto distribution is such that the mean is the same

as that of the distribution Fa. The linear inverse hazard rate of the Pareto distribution implies

a constant virtual need for discretion β − ρ(1− 1/γ), which induces a constant gap between the
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discretionary allocation and the allocation associated with the foa-wedge. Proposition 4 applies

because for the Pareto distribution, ρ1−F (θ)
θf(θ)

= β
γ

= 0.7
4
< 0.3 = 1− β, and Assumption I holds for

θ ≤ θp. Figure 5 depicts the economics of an optimal exemption.
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Figure 5: Intermediate degree of present bias and a high need for discretion.

Notes: The grey line in the left panel depicts the discretionary allocation. The dashed lines and the black lines depict the

allocation (left panel), the money burnt (middle panel), and the marginal penalties (right panel) with and without the exemption

from penalties for public spending below gn(θx). While the exemption forgoes discipline below g(θx) (left panel) by truncating the

marginal penalty schedule (right panel), it lowers the level of penalty (middle panel) while keeping the same level of discipline above

g(θx) (left and right panels).

3.2.2 Low need for discretion

The result in this section complements Proposition 4. If the need for discretion is low instead

of high, then the need for discipline may outweigh the need for discretion. In this case, a cap

that fulfills the average fiscal need is optimal. Define the tight cap allocation to be gc(θ) = gc for

θ ∈ Θ, where gc fulfills the expected fiscal need, W ′(T − gc) = E[θ]U ′(gc).

Proposition 5 (Optimal fiscal rule: intermediate degree of present bias and low need for dis-

cretion). Suppose that Assumption I holds for θ. If the derivative of ρ1−F
f

is smaller than ρ− β

for θ ∈ Θ, then a fiscal rule that implements the tight cap allocation is optimal.

Appendix C.11 contains the proof.

Example (Intermediate degree of present bias and low need for discretion). The economy is

identical to the one in the previous example, except that the distribution is exponential with
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parameter λ = 3. Unlike the distributions in the previous example, the exponential distribution

is log-concave. Proposition 5 applies since the exponential distribution has a log-concave tail,

β = ρ, and Assumption I holds for θ = θ. The tight cap allocation is depicted in the left panel of

Figure 6.
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Figure 6: Tight caps.

Notes: The grey lines depict the discretionary allocation, which is higher in the right panel because the degree of present bias is

higher. The black lines depict the optimal allocation at the tight cap, which fulfills the expected fiscal needs of the society.

3.3 High degree of present bias

Proposition 6 (Optimal fiscal rule: high degree of present bias). Suppose that Assumption H

holds. A fiscal rule that implements the tight cap allocation is optimal.

The proof of the following proposition is in Appendix C.12. The tight cap is so stringent

that it binds for all possible shock realizations. Indeed, Assumption H implies that the tight cap

constrains the government even for its lowest possible fiscal need (i.e., gc ≤ gd(θ)) (see Appendix

C.14 for the formal statement and its proof).

Example (High degree of present bias). The economy is identical to the one in the previous

example, except that the degree of present bias is high because β = 0.4. The condition of Propo-

sition 6 holds because ρ 1
λ

= 0.23̄ ≤ 0.3 = ρ − β for ρ = 0.7 and λ = 3. The tight cap allocation

is depicted in the right panel of Figure 6.
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4 Measurement

The need for discretion, governed by the elasticity of the right tail of the distribution of shocks,

is a rich object that is not directly observable. This section introduces a two-step method to

measure the need for discretion. A first step uses a positive model to infer the unobserved past

fiscal needs from government finance data. A second step uses tools from heavy-tail analysis to

infer the thickness of the right tail of the distribution of fiscal needs measured in the first step.

4.1 A tractable positive model of government deficit

In this section, I enrich the normative model of Section 1 to obtain a positive model from which

unobserved fiscal needs are exactly identified from government finance data.

I enrich the model by fleshing out the dynamics, and, because the yearly frequency of gov-

ernment finance data tends to be shorter than the cyclicality of government budgets, I allow

for shocks to the fiscal needs to be persistent.18 The government budget constraint governs the

dynamics of the debt, g = T −Rb+ b′. The problem of the government is

V (w, θ) = max
g,b′∈R+×(−∞,b̄]

θU(g) + βδE
[
V (w′, θ′)|θ] (13)

s.t. w = g − b′,

w′ = T −Rb′,

θ′ = θe + ϕθ + ε′, and ε′ ∼ F,

where, for analytical tractability, the borrowing capacity b̄ is the natural borrowing limit, and

−1 < ϕ < 1.

The taste shock θ is a catchall for all sources of fluctuations in fiscal needs, irrespectively

of whether it originates in a fluctuation in spending needs, in the cost of servicing the debt,

or in revenue. Hence, government revenue is constant in the model precisely to attribute any

fluctuation in government revenue in the data to a fluctuation in measured fiscal needs θ.19 This

18Halac and Yared (2014) show that in a world with persistent shocks, although the sequentially optimal fiscal

rule is static, the ex ante optimal fiscal rule is dynamic. Because the normative analysis above abstracts from

issues of persistence in the shocks, it restricts attention to sequentially optimal fiscal rules.
19This interpretation finds support in Section 5.4 in Amador, Werning, and Angeletos (2006). With a CARA

utility index U(g) = e−αg, the mapping of additive shocks to the government revenue T̃ into taste shocks has a

closed-form expression: θ = e−αT̃ . With a log utility index, however, the mapping is not in closed form.

30



approach has the advantage of yielding a tractable model in the spirit of recent developments

in the structural identification of uninsurable shocks in the labor market and at home (e.g.,

Heathcote, Storesletten, and Violante (2014) and Boerma and Karabarbounis (2022)).

Given that shocks may be serially correlated, I assume U(g) = ln(g) to preserve analyti-

cal tractability (more on the role of the elasticity of intertemporal substitution below). Also,

although the formulation above assumes a constant gross interest rate R for simplicity, it is

without loss of generality with log utility (see Barro (1999)).

Lastly, to simplify the exposition, the government discounts the future geometrically instead

of quasi-hyperbolically. This is without loss for the positive model because, with log preferences,

a hyperbolic discounter behaves like a geometric discounter (see Barro (1999)). The discount

factor of the society is δ, whereas the present-biased government has discount factor βδ.

At this stage, the task of using a dynamic model to infer the distribution of shocks may appear

intractable because of the simultaneity in determining the value function and the distribution

of spending needs. This is precisely the motivation to keep the model tractable. The model

admits an analytical solution because, as shown below, the value function depends only on the

first moment of the distribution of taste shocks, which can conveniently be normalized because

taste shocks are in utils, θe = (1− βδ)(1− ϕβδ).

The solution method is to guess and verify the solution. The guess is

V (w, θ) = a(θ) ln(w + b̄) + ν(θ), (14)

where a(θ) and ν(θ) capture the dependence of the continuation value on the realized fiscal need

and on the first moment of the distribution of fiscal needs. In turn, the guess for the policy

functions is linear in effective wealth,

g(w, θ) = (1− s(θ)) (w + b̄), (15)

and b′(w, θ) = −s(θ) (w+ b̄) + b̄, where s(θ) denotes the savings rate. Note that the savings rate

s(θ) refers to the ratio of the stock of unused borrowing capacity b̄ − b′(w, θ) over the stock of

effective wealth w + b̄ (unlike other common definitions of the savings rate based on the ratio of

the flow of savings over the flow of income).

Proposition 7. The value function (14) satisfies the Bellman equation. The policy function
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(15) solves the government problem with the value function (14), and the savings rate is

s(θ) =
βδ
(

1 + ϕ
1−ϕβδθ

)
θ + βδ

(
1 + ϕ

1−ϕβδθ
) · (16)

The proof is in Appendix C.13. The formula for the savings rate is only a function of the

discount factors, the persistence in the distribution of fiscal needs, and, importantly, of the

realized fiscal needs. In response to a persistent shock, the government behaves as if it was more

patient than it would be if shocks were iid. As a result, the savings rate is higher, and, more

importantly, the θ-elasticity of the savings rate is lower with persistent shocks.

Corollary 4 (Elasticity of savings rate and persistence). The elasticity of the government’s

savings rate to fiscal needs is lower with persistent shocks than that with iid shocks,∣∣∣∣∂ ln s(θ;ϕ > 0)

∂ ln(θ)

∣∣∣∣ ≤ ∣∣∣∣∂ ln s(θ;ϕ = 0)

∂ ln(θ)

∣∣∣∣.
Corollary 4 implies that abstracting from the persistence in the shocks would give a con-

servative measure of the variation in fiscal needs as a function of the variation in the savings

rate.20

Exact identification of the need for public spending. The key to the identification of

fiscal needs obtains from inverting (16) to express θ as a function of s,

θ(s) = βδ

(
1− s
s

)(
1− ϕβδ

1− ϕβδ
(

1
s

)) . (17)

Equation (17) identifies the unobserved fiscal needs that rationalize the savings rates observed

in government finance data.

The degree of persistence ϕ used for the measurement ought to be consistent with the auto-

correlation in the measured fiscal needs. I let the data determine ϕ by finding a fixed point of

the function that maps ϕ to the estimated autocorrelation in the measured fiscal needs with ϕ

(iterating over ϕ worked well in the application below). The persistence introduces a distinction

between the measured fiscal needs θ and the shock to the fiscal needs ε. I use the residuals ε̂

from fitting an AR(1) process on the measured fiscal needs as an estimate of the shocks.

20Appendix D contains a sensitivity analysis of the measurement with respect to the persistence of the shocks.
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4.2 Measuring the thickness of 1− F

In theory, kernel density estimation is a natural approach to infer the distribution from a sample.

It amounts to smoothing out the histogram by placing a kernel density on each data point and

summing them up to obtain the estimated density. In practice, however, because government

finance datasets are finite samples containing rarely occurring large observations—say, during

recessions—the kernel density estimator performs poorly in this context. A complementary

approach draws from heavy-tail analysis to infer whether the tail of the distribution behaves

asymptotically like a power function. That is, 1− F is heavy if there exists γ > 0, the exponent

of variation, such that limt→∞
1−F (θt)
1−F (t)

= θ−γ. The inverse of the exponent of variation governs

the tail thickness at the top (i.e., for θ →∞). Interestingly, estimation methods from heavy-tail

analysis are also informative about the behavior of the tail below the top (i.e., for θ above some

threshold). The Pareto distribution is a notable example of a heavy tail because the tail is a

power function 1− F (θ) = θ−γ.

I use two methods to investigate the behavior of 1 − F . The appeal of the first method—

the tail empirical distribution—is that it is graphical and intuitive. The appeal of the second

method—the Hill estimator—is that it is well-suited for serially correlated observations. A plot of

the tail empirical distribution depicts the log of the rank on the log of the size of the observations.

Intuitively, the motivation comes from taking the log on both sides of 1 − F (θ) = θ−γ, which

gives a linear relationship whose slope is the tail exponent γ. The tail empirical distribution

plots

{ln(θj:N), ln(1− F̂ (θj:N)), j = 1, . . . N}, (18)

where θj:N refers to the jth-order statistics from θ1:N ≤ θ2:N ≤ . . . θN :N , and F̂ (θj:N) = j
N

denotes

the rank of the observation.

If the plot of the log of the rank on the log of the size of the measured θ depicts a linear

relationship, the tail exponent can be estimated by OLS (see Gabaix and Ibragimov (2011)).

Using the closed-form expression (17) makes the identification of the thickness of the tail from

government finance data on savings rate (st)
N
t=1 transparent,

ln(1− F̂ (θj:N)) = constant− γ ln

(
1− sj:N
sj:N

)
+ γ ln

(
1− ϕ̂βδ 1

sj:N

)
, (19)

which shows that for independent data, variations in the savings rate alone identify γ. The

discount factors matter for the evaluation of the estimation of γ only for the term correcting for
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the serial dependence in fiscal needs.

The role of the elasticity of intertemporal substitution (EIS) is hidden in (19) because with a

log utility index, the EIS equals 1. Appendix D shows that the estimation identifies γ
EIS

. Hence,

the measured tail thickness is inversely related to the EIS. Intuitively, with a smaller EIS, a

larger variation in fiscal needs rationalizes the observed variation in savings rates.

The second method consists of estimating the tail parameter using the Hill estimator for se-

rially correlated data. Intuitively, for iid Pareto-distributed data, the Hill estimator corresponds

to the maximum likelihood estimator of the tail parameter. The Hill estimator remains a consis-

tent estimator of the exponent of variation γ even if the the data are not Pareto distributed and

exhibit serial correlation (see Resnick and Stărică (1995)). Although the Hill estimator is con-

sistent irrespectively of whether the measured θ or the residual ε̂ from fitting an autoregressive

process is used, for finite samples, Resnick and Stărică (1995) recommend using the residuals.

The Hill estimator of 1/γ based on N − k upper-order statistics is

Hk =
1

N − k

N∑
t=k+1

ln

(
ε̂t:N
ε̂k:N

)
. (20)

Computing the Hill estimator for different upper-order statistics is informative about the behavior

of the tail above different thresholds.

5 Application: the case of the European Union

In this section, I use the two-step methodology to measure the need for discretion of members

of the European Union (EU) over the past 28 years. I find evidence of a Pareto tail of the

distribution of shocks.

5.1 Government finance data

The dataset is from EuroStat. It contains data on government expenditure, revenue, debt, and

interest payable on government debt for the 27 current EU members between 1995 and 2022.

EuroStat harmonizes the data across EU members and computes interest payable on an accrual

basis (unlike the interest payments reported by the US government (see Hall and Sargent (2011)).

Because the model abstracts from default, I do not include data covering periods of high spreads
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for the countries concerned (Italy, Greece, Portugal, and Spain between 2007 and 2014, and

Bulgaria and Romania before 2010). The resulting sample has N = 631 observations.

Abstracting from the Excessive Deficit Procedure (EDP) of the European fiscal rule in the

positive model, despite the EDP being in place from 1995 to 2019, makes sense for two reasons.

First, note that it accords with the historical evidence that EU members largely disregarded the

EDP. Figure 7 shows that as much as 34% of the deficits/GDP of EU members between 1995

and 2019 exceeded the 3% threshold above which the EDP would, in theory, impose penalties.21

Second, if the EDP in place between 1995 and 2019 did incentivize EU members to have lower

government deficits, then abstracting from the EDP gives a conservative measure of the spending

needs.

Figure 7: EU deficits, 1995-2019
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Application to an economic union. The measurement outlined in Section 4 applies without

change to an economic union of homogeneous members. The member countries of the EU,

however, are not homogeneous. Following the literature on rare events in macroeconomics, the

key assumption in using the panel of measured shocks for heterogeneous members to infer the

thickness of the tail of the distribution of shocks ε is that the distributions have the same exponent

of variation (see, for instance, Barro and Jin (2011)). The member countries can, however, be

heterogeneous in their other characteristics including their government revenues, the degree of

21Also, although the lack of enforcement of the EDP is commonly interpreted as evidence of the non-

enforceability of supra-national fiscal rules, note that it does not mean that a better-designed fiscal rule is not

enforceable (see Halac and Yared (2023) for a theory of self-enforcing fiscal rules and Dovis and Kirpalani (2020,

2021) for reputational concerns in the design of a fiscal rule with limited commitment).
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present bias of their government, their cost of borrowing, the mean of their fiscal needs, and the

persistence of shocks to their fiscal needs.

5.2 Step 1: measurement of past fiscal needs

The key input to measure fiscal needs is the empirical counterpart to the savings rate. Using

(15), the savings rate is the complement to 1 to the spending rate, and the spending rate is the

ratio of public spending as a fraction of the net present value of the government’s revenue net of

servicing the debt,

sit = 1− git
b̄i + Tit −Ritdit−1

, (21)

where git, Tit, and dit denote government i spending, revenue, and debt in year t. The natural

borrowing limit b̄i is set at Ti
R−1

, where Ti and R denote averages over the sample period for

the revenue of government i and the interest rate payable on the debt.22 For a given country

i, the savings rate varies over time because of variations in government spending, in the cost of

servicing the debt, and in government revenues.

I obtain a panel of measured fiscal needs θit by using sit from (21) in (17) with δ = 0.96, and

the present bias βi is calibrated, for each country, to match the expected government spending

in the model to the average government spending in the data. The average β is 0.86. The Greek

government has the lowest β at 0.73 relative to the government of Luxembourg, which has the

highest β at 1. Further details on the calibration and a sensitivity analysis with respect to the

present bias are in Appendix D. The shocks ε̂it are the residuals from fitting country-specific

AR(1) processes to the measured fiscal needs, with the location minimally shifted by adding

minit ε̂it so that the shocks are positive (it is without loss because it amounts to a normalization

of θei). The shift in location does not affect the tail index. The Hill estimator, however, is not

location invariant (Appendix D addresses this shortcoming of the Hill estimator with a sensitivity

analysis).

5.3 Step 2: measurement of the tail thickness

In this section, I present evidence of a thick (Pareto) tail of the distribution of shocks on the

need for government spending of EU members.

22Appendix D includes a sensitivity analysis to alternative measures of the borrowing limit.
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Figure 8: Tail empirical distribution of fiscal needs of EU members, 1995-2022
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(b) Largest two-thirds of measured fiscal needs
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The tail empirical distribution. Figure 8a depicts the tail empirical distribution (18). The

correction of the rank by -1/2 reduces a finite sample bias in estimating the tail exponent (see

Gabaix and Ibragimov (2011)).

Figure 8b depicts evidence that the tail of the distribution of fiscal needs for EU members

follows a Pareto distribution above a threshold. Figure 8b displays the top two-thirds of the

measured fiscal needs, which amounts to truncating Figure 8a by retaining the 420 largest ob-

servations. The alignment of the log rank on log size indicates that a Pareto distribution fits the

upper tail of the distribution of spending needs remarkably well.23

The slope of the line fitted to the top two-thirds of the observations is an estimate of the

thickness of the Pareto tail parameter. The ordinary least squares estimate from a regression

of the log of rank corrected by a half on the log of size gives γ̂ = 11.3, with standard error

0.78 =
√

2
(2/3)N

γ̂.

The Hill plot. Figure 9 depicts the Hill plot {(k,H−1
k ), 1 ≤ k ≤ N}, where Hk are the Hill

estimates of 1/γ computed with the Hill estimator (20) and the shocks ε̂.

The Hill plot substantiates the finding from the tail empirical distribution. There is evidence

of a heavy tail above a threshold, which corresponds to the top two-thirds of the observations.

At the left end of Figure 9, the Hill estimator based on all the residuals indicates no evidence of a

Pareto tail, which is consistent with the curvature on the left end of the tail empirical distribution.

At the opposite end, the Hill estimator becomes arbitrarily imprecise because it is based on a

23Figure 10 in Appendix D depicts each country’s contribution to the empirical tail distribution in Figure 8.
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Figure 9: Hill plot for the tail of the distribution of shocks to fiscal needs of EU members
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decreasing number of observations. In between, the Hill plot stabilizes with estimates of γ in a

range between 5 and 7. The lower estimate from the Hill plot relative to the estimate from the

tail empirical distribution accords with the implications of Corollary 4; that is, not accounting

for persistence in the shock process biases the measure of the tail thickness downward.

6 Conclusion

To conclude, I use the findings from this paper to evaluate the Excessive Deficit Procedure (EDP)

of the Stability and Growth Pact and to propose avenues for reforms. For some context, the

following quote reflects the current penalty schedule of the EDP:

A non-interest-bearing deposit of 0.2% of GDP may be requested from a euro

area country that is placed in EDP. [...] In case of non-compliance with the initial

recommendation for corrective action, this non-interest-bearing deposit will be con-

verted into a fine. —European Commission, “EU Economic Governance ‘Six Pack’ State of

Play,” Memo/11/647, September 28, 2011.

First, there is a threshold below which discretion prevails and above which the country is

placed in EDP. This paper lends support to this feature of the Stability and Growth Pact.

Second, the EDP features a jump in the level of penalties—a notch point—from 0 to a non-

interest-bearing deposit of 0.2% of GDP. Initially, the penalty is the forgone interest on the

deposit. A notch can be part of the optimal penalty schedule if the distribution of shocks has a
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sufficiently thin tail. In this case, the notch needs to be prohibitive to implement a cap. With

France and Germany violating the EDP, history has taught us that the notch did not implement

a cap. Besides, doubt remains about the enforceability of the penalties because the violations

were left unpunished (see Dovis and Kirpalani (2020, 2021) and Halac and Yared (2022a, 2023)).

This paper suggests that the lack of enforcement may partly be due to a poor design of the

penalty schedule in the EDP. Under the conditions outlined in Section 3.2, and given the novel

evidence of a Pareto tail of the distribution of shocks to the fiscal needs of EU members, a fiscal

rule featuring a graduated schedule of mild penalties is a promising avenue for reform. Although

the EDP features some gradualism with the possibility to convert the deposit into a fine (i.e.,

the penalty would then be the deposit instead of the forgone interest on this deposit), the theory

does not lend support to gradualism with two notches. Expressing the penalty as a percentage

of the deficit above a threshold, instead of a percentage of GDP, would turn the notch into a

kink or a smooth schedule.

Lastly, the global Lagrangian method is widely applicable to solve mechanism design problems

with limited transfers in other contexts. Werning (2007) studies Pareto efficient income taxation,

where the requirement that a reform be Pareto improving limits transfers. The method also

applies to designing the cost of verifying the state to determine whether escape clauses apply

(see Halac and Yared (2020b) for the design of rules with costly state verification). Another

promising application is the study of the optimal illiquidity of retirement savings accounts for

households who undersave for their retirement (see Laibson et al. (1998) and Beshears et al.

(2020)).

References

Aguiar, M., Amador, M., Farhi, E. and Gopinath, G. (2015). Coordination and Crisis in

Monetary Unions, Quarterly Journal of Economics, 130(4): 1727-1780

Aguiar, M., Amador, M., and Fourakis, S. (2020). On the Welfare Losses from External

Sovereign Borrowing. IMF Economic Review, 68(1): 163-194.

Alesina, A., and Passalacqua, A. (2016). The Political Economy of Government Debt. Hand-

book of Macroeconomics, 2: 2599-2651. North Holland.

39



Alfaro, L. and Kanczuk, F. (2019). Fiscal Rules and Sovereign Default. Working paper.

Alonso, R., and Matouschek, N. (2008). Optimal Delegation. Review of Economic Studies, 75:

259-293

Amador, M., and Bagwell, K. (2022). Regulating a Monopolist With Uncertain Costs Without

Transfers. Theoretical Economics, 17(4):1719-1760

Amador, M., and Bagwell, K. (2020). Money Burning in the Theory of Delegation. Games and

Economic Behavior, 112: 382-412

Amador, M., Bagwell, K., and Frankel, A. (2018). A Note on Interval Delegation. Economic

Theory Bulletin, 6(2): 239-249

Amador, M. and Bagwell, K. (2013). The Theory of Optimal Delegation With an Application

to Tariff Caps. Econometrica, 81: 1541-1599

Amador, M., Werning, I. and Angeletos, G.-M. (2006). Commitment vs. Flexibility. Econo-

metrica, 74: 365-396

Ambrus, A., and Egorov, G. (2017). Delegation and Nonmonetary Incentives, 171: 101-135

Ambrus, A., and Egorov, G. (2013). Comment on “Commitment vs. Flexibility”, Econometrica,

81(5): 2113-2124

Athey, S., Atkeson, A., and Kehoe, P. (2005). The Optimal Degree of Discretion in Monetary

Policy, Econometrica, 73(5): 1431-1475

Atkeson, A. and Lucas, R. E. (1992). On Efficient Distribution with Private Information.

Review of Economic Studies, 59(3): 427-453

Azzimonti, M., Battaglini, M., and Coate, S. (2016). The Costs and Benefits of Balanced

Budget Rules: Lessons from a Political Economy Model of Fiscal Policy, Journal of Public

Economics, 136: 45-61

Bassetto, M. and Sargent, T. J. (2006). Politics and Efficiency of Separating Capital and

Ordinary Government Budgets. Quarterly Journal of Economics, 121(4):1167-1210

40



Barro, R. J. (1999). Ramsey Meets Laibson in the Neoclassical Growth Model. Quarterly

Journal of Economics, 114(4): 1125-1152

Barro, R. J. and Jin, T. (2011). On the Size Distribution of Macroeconomic Disasters. Econo-

metrica, 79(5): 1567-1589

Beetsma, R. and Uhlig, H. (1999). An Analysis of the Stability and Growth Pact, Economic

Journal, 109: 546-571

Beshears, J., Choi, J. J., Clayton, C., Harris, C., Laibson, D., and Madrian, B. C. (2020).

Optimal Illiquidity. Working paper.

Boerma, J., and Karabarbounis, L. (2021). Inferring Inequality with Home Production. Econo-

metrica 89(5): 2517-2556

Chari, V. V., and Kehoe, P. (2007). On the need for fiscal constraints in a monetary union.

Journal of Monetary Economics, 54: 2399-2408

Clayton, C., and Schaab, A. (2022). A Theory of Dynamic Inflation Targets. Working paper.

Cooper, R., and Kempf, H. (2004). Overturning Mundell: Fiscal Policy in a Monetary Union.

Review of Economic Studies, 71: 371-396

Diamond, P. (1998). Optimal Income Taxation: An Example with a U-Shaped Pattern of

Optimal Marginal Tax Rates. American Economic Review, 88: 83-95

Dovis, A., and Kirpalani, R. (2020). Fiscal Rules, Bailouts, and Reputation in Federal Govern-

ments. American Economic Review 110(3): 860-888

Dovis, A., and Kirpalani, R. (2021). Rules without Commitment: Reputation and Incentives.

Review of Economic Studies, 88(6): 2833-2856

Felli, C., Piguillem, F., and Shi, L. (2021). Fiscal Rules and Discretion with Risk of Default.

Working paper.

Galperti, S. (2015). Commitment, Flexibility, and Optimal Screening of Time Inconsistency.

Econometrica, 83: 1425-1465

41



Gabaix, X., and Ibragimov R. (2011). Rank-1/2: A Simple Way to Improve the OLS Estimation

of Tail Exponents. Journal of Business Economics and Statistics. 29(1): 24-39

Hall, G. J., and Sargent, T. J. (2011). Interest Rate Risk and Other Determinants of Post-WWII

US Government Debt/GDP Dynamics. American Economic Journal: Macroeconomics, 3:

192-214

Halac, M., and Yared, P. (2014). Fiscal Rules and Discretion under Persistent Shocks. Econo-

metrica, 82: 1557-1614

Halac, M., and Yared, P. (2018). Fiscal Rules and Discretion in a World Economy. American

Economic Review, 108: 2305-2334

Halac, M., and Yared, P. (2020a). Inflation Targeting under Political Pressure. in Independence,

Credibility, and Communication of Central Banking, edited by Ernesto Pastén and Ricardo

Reis, Santiago, Chile: Central Bank of Chile, 7-27

Halac, M., and Yared, P. (2020b). Commitment vs. Flexibility with Costly Verification. Journal

of Political Economy, 128: 4523-4573

Halac, M., and Yared, P. (2022a). Fiscal Rules and Discretion under Limited Enforcement.

Econometrica, 90: 2093-2127

Halac, M., and Yared, P. (2022b). Instrument vs. Target-Based Rules. Review of Economic

Studies, 89: 312-345

Halac, M., and Yared, P. (2023). A Theory of Fiscal Responsibility and Irresponsibility. working

paper

Harstad, B. (2007). Harmonization and Side Payments in Political Cooperation. American

Economic Review, 97(3): 871-889

Hatchondo, J.-C., Martinez, L., and Roch, F. (2020). Fiscal Rules and the Sovereign Default

Premium. American Economic Journal: Macroeconomics, 14(4): 244-273

Heathcote, J., Storesletten, K., and Violante, G. (2014). Consumption and Labor Supply with

Partial Insurance: An Analytical Framework. American Economic Review 104(7): 2075-

2126

42



Holmström, B. (1977). On Incentives and Control in Organizations. Ph.D. thesis, Stanford

Graduate School of Business
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Online Appendix

A Model

A.1 Quadratic preferences with additive bias

Although the economic environment in this paper does not nest the quadratic preferences model

with additive bias, the analysis of this paper applies with a minor change to the definition of the

wedge.

The social welfare function for the quadratic preferences model with additive bias is θg − g2

2
,

and the governments’ objective is θg + (1 − β)g − g2

2
. The discretionary allocation differs from

the first-best allocation due to an additive bias, gd(θ) = θ + (1− β).

While the natural definition of the wedge in the environment with a multiplicative bias is a

proportional wedge in the Euler equation, for an environment with an additive bias, an additive

wedge is analytically more tractable. Define the additive wedge ∆a in the Euler equation of

the government as follows: ∆a(g, θ) = θ + (1− β)− g. The additive wedge at the discretionary

allocation is null and positive for an allocation that spends less than the discretionary allocation.

The design of a rule with an additive bias is

max
g(·), t(·)

{∫
Θ

[
θg(θ)− 1

2
g(θ)2 − ρt(θ)

]
dF (θ)

∣∣ (IC) and t(θ) ≥ 0 for θ ∈ Θ

}
, (22)

where the incentive compatibility constraints are

θg(θ) + (1− β)g(θ)− 1
2
g(θ)2 − t(θ) ≥ θg(θ̂) + (1− β)g(θ̂)− 1

2
g(θ̂)2 − t(θ̂), for θ, θ̂ ∈ Θ. (IC)

Lemma 7 (Incentive compatible allocations). An allocation g(·) is incentive compatible given a

money-burning schedule t(·) if and only if g(·) is non-decreasing and

t(θ) = t(θ) + θg(θ) + (1− β)g(θ)− 1
2
g(θ)2 − θg(θ)− (1− β)g(θ) + 1

2
g(θ)2 −

∫ θ

θ

g(θ̃) dθ̃. (23)

Substituting the money burning schedule (23) in the objective in (22) gives∫
Θ

[
−(1− β)g(θ) + (1− ρ)

(
θg(θ) + (1− β)g(θ)− 1

2
g(θ)2

)
+ ρ1−F (θ)

f(θ)
g(θ)

]
dF (θ) (24)

− ρ
(
t(θ)− θg(θ)− (1− β)g(θ) + 1

2
g(θ)2

)
.
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Maximizing (24) pointwise for θ > θ and expressing the first-order condition as an additive

wedge gives the following definition:

∆a
n(θ) =

1

1− ρ

(
(1− β)− ρ1−F (θ)

f(θ)

)
. (additive foa-wedge)

The analysis in the main text applies with this minor modification to the foa-wedge to char-

acterize optimal fiscal rules for the model with quadratic preferences and an additive bias.

A.2 Economic Union

This section introduces the additional notation needed to design a fiscal rule for an economic

union.24 The design a fiscal rule for an economic union that is not fiscally integrated separates

into the design of country-specific penalty schedules as studied in Sections 1 to 3.

The economic union has N countries indexed by i = 1, . . . ,N . Each country has its own

government choosing its spending according to (2), where θ denotes the idiosyncratic shock to

the country’s fiscal needs.

A fiscal rule is a tuple of penalty schedules (Pi(·))Ni=1. In the context of an economic union, the

non-negativity constraint on penalties captures the lack of fiscal integration because a negative

penalty could model a transfer across members. The lack of fiscal integration also implies that

the budget constraints of the different members are independent due to the absence of transfers,

g + x
Ri

= Ti. The country-specific interest rates are assumed to be exogenous which implicitly

assumes that each country is small and the economic union is small as well. Halac and Yared

(2018) show that for a large economic union, however, optimal coordinated and uncoordinated

fiscal rules differ due to the disciplining and redistributive effects of the endogenous response of

the interest rate to the fiscal rule.

The three key determinants of an optimal fiscal rule, namely the distribution of shocks Fi, the

degree of present bias 1 − βi, and the degree of asymmetry in the cost of meting out a penalty

1 − ρi, can be country specific. The welfare of the economic union is the aggregation of the

24A long line of research studies fiscal rules in economic unions with limited commitment (see Beetsma and Uhlig

(1999), Cooper and Kempf (2004), Chari and Kehoe (2007), Chari and Kehoe (2008), Aguiar, Amador, Farhi,

and Gopinath (2015), Dovis and Kirpalani (2020), and Dovis and Kirpalani (2021)). Yared (2019) surveys the

literature. As mentioned in the introduction, some of the literature provides the micro-foundations for modeling

the deficit bias on the part of members of an economic union with a present bias and focuses on the optimal

stringency of a cap on deficit. This paper focuses on the optimal structure of a fiscal rule.
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welfare of each country:

N∑
i=1

∫
Θi

[θU(gi(θ)) +Wi(Ti − gi(θ))− ρiPi(gi(θ))] dFi(θ),

where the country-specific interest rates are subsumed into the continuation values Wi(Ti −

g(θ)) = W (Ri(Ti − g(θ))). Setting equal weights on the welfare of each country is without loss

of generality precisely because, for strictly positive weights, the problem for an economic union

separates into N country-specific problems independently of the weights.

B Solution method for the design of rules

The non-negativity constraint on the penalty schedule sets program (4) apart from mechanism

design problems in which transfers are possible. Unlike the incentive compatibility constraints,

the non-negativity constraint on the penalty schedule cannot be easily summarized in the objec-

tive function to be maximized point-wise without resorting to Lagrangian methods. This section

outlines how I use the first-order conditions of the Lagrangian method to identify a candidate

solution and to find conditions for global optimality.

The first step uses a Lagrange multiplier function to combine the non-negativity constraint

on the penalty schedule and the objective in a Lagrangian. Let Λ : Θ 7→ [0, 1] be a non-

decreasing function such that limθ→θ̄ Λ(θ) = 1 and 1−Λ is integrable. A valid Lagrange multiplier

function is non-decreasing, which is the infinite dimensional analog of a non-negative Lagrange

multiplier for the Kuhn-Tucker theorem with finitely many inequality constraints. Define the

Lagrangian, with Lagrange multiplier function Λ, as a functional on Φ ≡ {(u, t) | u : Θ 7→

R+ is non-decreasing, and t ∈ R+} as follows:

L(u, t|Λ) ≡
∫

Θ

[
θu(θ) +W (T − U−1(u(θ)))− ρt(θ, u, t)

]
dF (θ) +

∫
Θ

t(θ, u, t)dΛ(θ), (25)

where t(θ, u, t) is the schedule associated with allocation U−1(u(·)) in Lemma 1 and t(θ) = t.

The Gateaux derivative in the direction (h, ht) ∈ Φ is defined as follows:25

∂L(u, t, h, ht|Λ) ≡ lim
α↓0

1

α

[
L(u+ αh, t+ αht|Λ)− L(u, t|Λ)

]
. (26)

The next lemma gives optimality conditions in terms of the Gateaux derivative evaluated at

the solution. The optimality conditions are that the Gateaux derivative evaluated at the solution

is null in the direction of the solution and non-positive in any non-decreasing direction.

25The existence of the Gateaux differential follows from Lemma A.1 p. 390 of Amador, Werning, and Angeletos

(2006).
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Lemma 8 (Lemma of optimality). If there exists a non-decreasing u∗ ≡ U(g∗) and t∗ in the

convex cone Φ and a non-decreasing function Λ∗ : Θ 7→ [0, 1] such that limθ→θ̄ Λ∗(θ) = 1 and

1− Λ∗ is integrable, and if

∂L(u∗, t∗, u∗, t∗|Λ∗) = 0, and ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for all (h, ht) ∈ Φ,

then g∗ ≡ U−1(u∗) and the associated money-burning schedule t∗ characterized by (5) with t∗(θ) =

t∗ solve the mechanism design problem (4).

The proof is an application of the global theory of constrained optimization (Chapter 8 in

Luenberger (1969), Lemma 1 p.227, and Theorem 1 p.220), as used in Lemma A.2 in Amador,

Werning, and Angeletos (2006) and Theorem 1 in Amador and Bagwell (2013). A part of the

proof shows that the degree of concavity of the Lagrangian depends on ρ. The Lagrangian is

strictly concave for ρ ∈ [0, 1) and a non-decreasing Lagrange multiplier function (see the proof

of Lemma 8). The Lagrangian is linear for ρ = 1.

Proof of Lemma 8. Lemma A.2 in Amador, Werning, and Angeletos (2006) implies that if the

Lagrangian with Lagrange multipliers Λ∗ is concave, then the equality and inequality conditions

in terms of Gateaux derivatives imply that the Lagrangian is maximized at u∗, t∗:

L(u∗, t∗|Λ∗) ≥ L(u, t|Λ∗) for all (u, t) ∈ Φ.

To show the concavity of the Lagrangian with Lagrange multipliers Λ∗, it is convenient to spell

out the Lagrangian (25) and factorize the non-linear terms as follows:

L(u, t|Λ∗) ≡
∫

Θ

[
u(θ)

(
(1− F (θ))− θ ρ−β

ρ
f(θ)

)]
dθ

−
∫

Θ

[u(θ)(1− Λ∗(θ))] dθ + (θ u(θ)− t)Λ∗(θ) +

∫
Θ

[θ u(θ)] dΛ∗(θ)

+

∫
Θ

[
βW (T − U−1(u(θ)))

]
d
(

1−ρ
ρ
F (θ) + Λ∗(θ)

)
+ βW (T − U−1(u(θ)))Λ∗(θ).

The integrands for the integrals in the first two lines are linear in u. For the terms in the

remaining two lines, to show that the function u 7→ W (T − U−1(u))) is concave, note that

the utility index U is strictly increasing and concave so its inverse U−1 is strictly increasing

and convex ( U−1′(U(x)) = 1/U ′(x) and U−1′′(U(x)) = −U−1′(U(x))U ′′(x)/U ′(x)2). Since W is

increasing and concave and −U−1 is concave, the composition u 7→ W (T − U−1(u)) is concave.

A sufficient condition for the Lagrangian to be concave is that the function 1−ρ
ρ
F (θ) + Λ∗(θ) be

non-decreasing, which is the case since 0 ≤ ρ ≤ 1 and F and Λ∗ are both non-decreasing.

It remains to show that the maximizer of a concave Lagrangian at a valid Lagrange multiplier

is the solution to the constrained optimization problem of interest. This is precisely what the

global theory of constrained optimization does for us.
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The following notation maps the environment studied in this paper to Theorem 1 in Amador

and Bagwell (2013) p.1575: X = {u, t | u : Θ 7→ R, t ∈ R}, Z = {z | z : Θ 7→ R} with norm

||z||= supθ∈Θ|z(θ)|, Ω = {(u, t) ∈ X| u is non-decreasing, t ≥ 0}, and P = {z ∈ Z | z(θ) ≥
0 for θ ∈ Θ}. The objective is a functional f : Ω 7→ R defined as follows:

f(u, t) =−
∫

Θ

[
u(θ)ρ1−F (θ)

f(θ)
+ β(1− β)W (T − U−1(u(θ)))

]
dF (θ)

− (ρ− β)

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dF (θ).

The constraints on limited transfers are defined as follows: G : Ω 7→ Z,

G(u, t) = −
(
t+ θ u(θ) + βW (T − U−1(u(θ)))− θ u(θ)− βW (T − U−1(u(θ)))−

∫ θ

θ

u(θ̃) dθ̃

)
,

and their contributions to the Lagrangian are given by T : Z 7→ R,

T (z) =

∫
Θ

z(θ)dΛ∗(θ),

which satisfies T (z) ≥ 0 for all z ∈ P since Λ∗ is non-decreasing. Since L(u|Λ∗) = −f(u) −
T (G(u)), Theorem 1 from Amador and Bagwell (2013) implies that (u∗, t∗) solves

min
(u,t)∈Ω

{f(u, t)|−G(u, t) ∈ P}.

Inverting the above mapping from the environment of this paper to Theorem 1 in Amador and

Bagwell (2013) and using t(·) defined in (5) as a function of g(·), the allocation g∗ = U−1(u∗)

and the initial level t∗ solve the optimization problem:

max
g∈Ω, t≥0

∫
Θ

[θU(g(θ)) +W (T − g(θ))− ρt(θ)] dF (θ)

s.t. for all θ ∈ Θ:

βt(θ) = βt+ θU(g(θ)) + βW (T − g(θ))− θU(g(θ))− βW (T − g(θ))−
∫ θ

θ

U(g(θ̃))dθ̃

g is non-decreasing

t(θ) ≥ 0.

The characterization of incentive compatible allocations in Lemma 1 implies that (g∗, t∗) in which

βt∗(θ) ≡ βt∗ + θ U(g∗(θ)) + βW (T − g∗(θ))− θ U(g∗(θ))− βW (T − g∗(θ))−
∫ θ

θ

U(g∗(θ̃)) dθ̃

solve the mechanism design problem (4).

The solution method appears to ask the designer to guess the solution and verify that it satisfies

the optimality conditions in Lemma 8. Guessing the solution amounts to the arrangement of
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three building blocks. The first building block obtains from ignoring the monotonicity and the

non-negativity constraint on the penalty schedule to determine the spending gn for ρ < 1. The

second building block is the discretionary allocation. It is a natural candidate because of the

non-negativity constraint on the penalty schedule. Third, the allocation may be constant over

subintervals of Θ.

I use the optimality conditions of Lemma 8 to determine the arrangement of the three building

blocks. The first optimality condition sets the Gateaux derivative of the Lagrangian to zero. It

is the first requirement in the definition of the thresholds θp and θx. It also determines the

Lagrange multiplier function. In turn, Assumption sL is precisely the condition needed for the

Lagrange multiplier function to be non-decreasing. The second optimality condition verifies that

the Gateaux derivative of the Lagrangian in any non-decreasing direction is negative. It is the

second requirement in the definition of the thresholds θp and θx.

For reference, the Lagrangian (25), after rescaling the objective by β and the Lagrange mul-

tiplier by ρβ, reads

L(u, t|Λ) =

∫
Θ

[
β(1− β)W (T − U−1(u(θ))) + ρ1−F (θ)

f(θ)
u(θ)

]
dF (θ)

+ (β − ρ)

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dF (θ)

+ ρ
(
θu(θ) + βW (T − U−1(u(θ)))− t

)
Λ(θ)

+ ρ

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dΛ(θ)− ρ

∫
Θ

[u(θ)(1− Λ(θ))] dθ.

The Gateaux derivative in the direction (h, ht), defined in (26), reads as follows:26

∂L(u, t, h, ht|Λ) =

∫
Θ

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
+ (1− ρ)∆(U−1(u(θ)), θ)θ

)
h(θ)

]
dF (θ) (27)

+ ρ
(
θ∆(U−1(u(θ)), θ)h(θ)− ht

)
Λ(θ)

+ ρ

∫
Θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
dΛ(θ)− ρ

∫
Θ

[h(θ)(1− Λ(θ))] dθ.

C Proofs

C.1 Lemma 1 on incentive compatible money-burning schedules

Proof of Lemma 1. The proof follows the argument in Myerson (1981). Suppose that g(·) is

incentive compatible given a money-burning schedule t(·). Define V (θ) = θU(g(θ)) + βW (T −
26The existence of the Gateaux differential follows from Lemma A.1 p. 390 of Amador, Werning, and Angeletos

(2006).
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g(θ))− βt(θ) and u(θ) = U(g(θ)). Consider θ > θ̂, incentive compatibility implies,

V (θ) ≥ V (θ̂) + (θ − θ̂)u(θ̂), and V (θ̂) ≥ V (θ) + (θ̂ − θ)u(θ).

The inequalities combined imply that u(·) is non-decreasing,

u(θ) ≥ V (θ)− V (θ̂)

θ − θ̂
≥ u(θ̂).

Since U is strictly increasing and u(·) is non-decreasing, g is also non-decreasing and V (·) is

continuous and differentiable almost everywhere. Taking the limit, V ′(θ) = u(θ). Integrating

from θ to θ gives V (θ) = V (θ) +
∫ θ
θ
u(θ). Replacing V and u by their definitions gives (5).

Suppose instead that g(·) is non-decreasing and, for a given t(θ), define t(·) according to (5).

Using the definitions of V and u, rewrite (5) as follows: V (θ) = V (θ) +
∫ θ
θ
u(θ)dθ. For θ ≥ θ̂,

V (θ)− V (θ̂) =

∫ θ

θ̂

u(θ)dθ ≥
∫ θ

θ̂

u(θ̂)dθ = (θ − θ̂)u(θ̂).

The inequality holds because a non-decreasing g(·) implies that u(·) is also non-decreasing. Sub-

stituting the definitions of V and u gives the incentive compatibility constraints.

C.2 Lemma 2 on the monotonicity of gn

Proof of Lemma 2. Combining the definition of the (virtual) need for discretion and the defini-

tion of gn gives:

θ(1−∆n(θ))
1

β
=
W ′(T − gn(θ))

U ′(gn(θ))
.

Substituting the foa-wedge with its formula (7) gives:

1

1− ρ

(
ρ

1− F (θ)

f(θ)
− (ρ− β)θ

)
1

β
=
W ′(T − gn(θ))

U ′(gn(θ))
.

Since W is concave and the utility index U is strictly concave, the ratio W ′(T−gn(θ))
U ′(gn)

is unambigu-

ously increasing in the argument gn. The left-hand side is non-decreasing in θ if and only if the

derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ− β.

C.3 Proposition 2 on the optimality of hybrid rules

Proof of Proposition 2. The proof consists of applying Lemma 8. A valid allocation is non-

decreasing. The discretion, on-equilibrium, and off-equilibrium penalties allocation, denoted by

gnpd , is continuous since gd(θn) = gn(θn) for θn > θ. The discretionary allocation gd is strictly

increasing. The government spending gn(θ) is defined for θ ∈ (θn, θp) because Assumption I

holds for θ ∈ (θn, θp), by definition of θn. Lemma 2 implies that gn is non-decreasing over (θn, θp)

because the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ − β. The utility index U is strictly
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increasing so the utility profile from the discretion, on-equilibrium, and off-equilibrium penalties

allocation u∗(θ) = U(gnpd (θ)) for θ ∈ Θ and t∗ = 0 satisfies (u∗, t∗) ∈ Φ.

The Lagrange multiplier function is

ρΛ∗(θ) =


ρ for θ ≥ θn

ρF (θ) + (1− β)θf(θ) for θ ∈ (θ, θn)

0 for θ = θ.

A valid Lagrange multiplier function is non-decreasing. The lower bound on the elasticity

of the density in Assumption sL holding for θ ≤ θn is equivalent to the Lagrange multiplier Λ∗

being non-decreasing on (θ, θn). The jumps at θ and θn must be non-negative. The jump at θ

is non-negative since f is non-negative, 0 < β ≤ 1, and ρ > 0. The jump at θn is non-negative

since either θn < θ̄ in which case gn(θn) = gd(θn) and the Lagrange multiplier is continuous at

θn, or θn = θ̄ in which case Assumption I in the definition of θn implies that gn(θn) ≤ gd(θn) and

the jump is non-negative. Note also that 1−Λ∗ is integrable because 1−F is integrable and the

expectation exists.

The Gateaux derivative (27), with a Lagrange multiplier function equal to 1 for θ ≥ θn, reads

∂L(u, t, h, ht|Λ∗) =

∫ θn

θ

ρ
[
θ∆(U−1(u(θ)), θ)h(θ)

]
dΛ∗(θ) (28)

+

∫ θn

θ

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
+ (1− ρ)θ∆(U−1(u(θ)), θ)−ρ(1− Λ∗(θ))

)
h(θ)

]
dF (θ) (29)

+

∫ θp

θn

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
+ (1− ρ)θ∆(U−1(u(θ)), θ)

)
h(θ)

]
dF (θ) (30)

+

∫ θ̄

θp

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
+ (1− ρ)θ∆(U−1(u(θ)), θ)

)
h(θ)

]
dF (θ). (31)

The last step shows that the conditions in terms of Gateaux derivatives in Lemma 8 are met.

The term (28) evaluated at u∗ is null irrespectively of the direction of the Gateaux derivative

(h, ht) because gnpd (θ) = gd(θ) for θ ≤ θn implies ∆(U−1(u∗(θ)), θ) = 0 for θ ≤ θn. The choice

of Lagrange multiplier over (θ, θn) is precisely the condition needed for the term (29) to be null

irrespectively of the direction (h, ht) of the Gateaux derivative. The definition of gn in (7) implies

that the term (30) evaluated at u∗ is null irrespectively of the direction (h, ht) of the Gateaux

derivative.

Using the definition of the wedge to get θ∆(U−1(u(θ)), θ) = θ − βW ′(T−U−1(u(θ)))
U ′(U−1(u(θ)))

, and the

following characterization of u∗ above θp:
βW ′(T−U−1(u(θ)))
U ′(U−1(u(θ)))

= 1
1−ρ

(
ρ1−F (θp)

f(θp)
+ (β − ρ)θp

)
, for

θ ≥ θp, line (31) reads∫ θ̄

θp

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ)(θ − θp)

)
h(θ)

]
dF (θ). (32)
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Integrating (32) by parts gives∫ θ̄

θp

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ) h(θp) (32.1)

+

∫ θ̄

θp

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ)

]
dh(θ̂), (32.2)

where I used that limθ̂→θ̄
∫ θ̄
θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ)h(θ̂) is zero since h is

bounded if θ̄ <∞. If θ̄ =∞, the result follows from taking the limit of a sequence of environments

with compact support as shown below.

The next claim shows that the definition of θp is precisely so that the inner integral in (32.2)

is negative for θ̂ ≥ θp and null for θ̂ = θp (which also implies that (32.1) is null).

Claim 1. Inequality (10) is equivalent to∫ θ̄

θ̂

[
ρ

1− F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (33)

Proof of Claim 1. The definition of the wedge implies the following identity:

θ̂∆(g, θ̂) = θ̂ − βW ′(T − g)

U ′(g)
= θ̂ − θ̃ + θ̃∆(g, θ̃).

Substituting this identity for the wedge (evaluated at gn(θ̃)) in inequality (10) gives∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤

(
(1− β)θ̃ − (1− ρ)θ̃∆n(θ̃))

)
(1− F (θ̂)).

Using the definition of ∆n, i.e., equation (7), on the right-hand side gives∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (34)

Add and subtract ρθ to the integrand on the left-hand side and rearrange terms to get∫ θ̄

θ̂

[
ρ(θ − θ̂) + (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)).

Integrating the left-hand side by parts gives inequality (33).

For (h, ht) ∈ Φ, h is non-decreasing and because the inner integral from (32.2) is non-positive,

the integral (32.2) is non-positive for (h, ht) ∈ Φ. The Gateaux derivative of the Lagrangian

at the candidate solution (u∗, t∗) is null in the direction (h, ht) = (u∗, t∗) and negative in all

directions (h, ht) ∈ Φ.

For θ̄ = ∞, consider a sequence of environments, indexed by m ∈ N, with Θ = [θ, θ̄m],

θ̄m <∞, and limm→∞ θ̄m =∞. Denote by Fm the truncation of F on [θ, θ̄m], defined as follows:

Fm(θ) = Fθ
F (θm)

for θ ∈ [θ, θ̄m] and Fm(θ) = 1 for θ ≥ θ̄m. Note that Fm converges weakly to F .
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Also, since F is twice continuously differentiable, fm is continuous and it converges point-wise

to f . For each m ∈ N, denote the solution of the environment with the truncated distribution

Fm by gnpd (·;m) and the threshold at which the cap binds by θ
(m)
p .

First, note that gnpd (·;m) converges point-wise to gnpd (·) if limm→∞ θ
(m)
p = θp. By assumption

θp > θ. For θp < θ̄, it is the lowest fiscal need that solves β E[θ|θ ≥ θp] = θp, and satisfies (see

Lemma 4), βE[θ|θ ≥ θ̂]−ρθ̂ ≤ βE[θ|θ ≥ θp]−ρθp for θ̂ ≥ θp. The threshold θ
(m)
p is characterized

analogously. For θ
(m)
p < θ̄, it is the lowest fiscal need that solves β Em[θ|θ ≥ θ

(m)
p ] = θ

(m)
p ,

and, by Lemma 4, βEm[θ|θ ≥ θ̂] − ρθ̂ ≤ βEm[θ|θ ≥ θ
(m)
p ] − ρθ

(m)
p for θ̂ ≥ θ

(m)
p . For any

θ̂ > θ, because Fm converges weakly to F , limm→∞ Em
[
θ

θ̂
|θ ≥ θ̂

]
= E

[
θ

θ̂
|θ ≥ θ̂

]
. Because taking

the limit preserves weak inequalities, limm→∞ θ
(m)
p ≥ θp. Since Fm is a right-truncation of F ,

Em
[
θ

θ̂
|θ ≥ θ̂

]
≤ E

[
θ

θ̂
|θ ≥ θ̂

]
. Hence θ

(m)
p ≤ θp for every m. It follows that limm→∞ θ

(m)
p ≤ θp.

Combining the two inequalities, limm→∞ θ
(m)
p = θp, and gnpd (·,m) converges pointwise to gnpd (·).

Second, note that since (gnpd (·,m))m∈N is a uniformly bounded sequence and (fm)m∈N is

bounded by an integrable density, the dominated convergence theorem implies that the sequence

of social welfare (with the incentive compatible t(·;m) substituted in) resulting from the se-

quence of truncated economies converges to the social welfare of the non-truncated economy.

Hence a fiscal rule with a null intercept that implements gnpd (·) is optimal for the non-truncated

economy.

C.4 Lemma 3 and Lemma 5 on the implications of Assumption sL

The proofs of Lemma 3 and Lemma 5 use the following Claim.

Claim 2. Suppose that Assumption sL holds for θ ≤ θ∗ and there exists θ∗ ≤ θ∗ such that

ρ1−F (θ∗)
θ∗f(θ∗)

< 1− β. Then ρ1−F (θ)
θf(θ)

< 1− β for θ ∈ [θ∗, θ∗].

Proof of Claim 2 . For any θ ≤ θ∗,

d
dθ

(
ρ1−F (θ)

f(θ)
− θ(1− β)

)
= −ρ− ρ1−F (θ)

θf(θ)
θf ′(θ)
f(θ)
− (1− β)

≤ ρ1−F (θ)
θf(θ)

1−β+ρ
1−β − (1− β + ρ)

= 1−β+ρ
1−β

(
ρ1−F (θ)

θf(θ)
− (1− β)

)
,

in which the inequality follows from Assumption sL. By assumption, ρ1−F (θ∗)
θ∗f(θ∗)

− 1 − β < 0 for

θ∗ ≤ θ∗. Given that 1−β+ρ
1−β ≥ 0, combining the two inequalities implies d

dθ

(
ρ1−F (θ)

f(θ)
− θ(1− β)

)
<

0 for θ ∈ [θ∗, θ∗].

Proof of Lemma 3. Note that θn ∈ (θ, θ̄) implies that ρ1−F (θn)
θnf(θn)

= 1 − β. The argument is by

contradiction. Suppose that there exists θ∗ ≤ θn such that ρ1−F (θ∗)
θ∗f(θ∗)

< 1 − β. Claim 2, implies

that ρ1−F (θ)
θf(θ)

< 1− β for θ ∈ [θ∗, θn], which contradicts ρ1−F (θn)
θnf(θn)

= 1− β.
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Proof of Lemma 5. The proof proceeds in three steps. The first step shows that the definition of

θp implies ρ1−F (θp)

θpf(θp)
≥ 1− β if θp ∈ (θ, θ̄). The definition of θp implies the following inequality on

the conditional tail expectation (see Lemma 4): βE[θ|θ ≥ θ̂]−ρθ̂ ≤ βE[θ|θ ≥ θp]−ρθp for θ̂ ≥ θp.

The derivative of the left-hand side with respect to θ̂ reads −β θ̂f(θ̂)

1−F (θ̂)
+βE[θ|θ ≥ θ̂] f(θ̂)

1−F (θ̂)
−ρ. The

derivative must be negative at θ̂ = θp because the inequality holds with equality at θp. Using

that βE[θ|θ ≥ θp] = θp for an interior θp gives −β θpf(θp)

1−F (θp)
+ θp

f(θp)

1−F (θp)
− ρ ≤ 0, which completes

the first step. The second step is Claim 2.

The last step shows that ρ1−F (θ)
θf(θ)

≥ 1 − β for θ ≤ θp by contradiction. Suppose not, so there

exists θ∗ < θp such that ρ1−F (θ∗)
θ∗f(θ∗)

< 1 − β. Claim 2 implies that ρ1−F (θ)
θf(θ)

< 1 − β for θ ∈ [θ∗, θp],

which contradicts ρ1−F (θp)

θpf(θp)
≥ 1− β.

C.5 Lemma 4 on the second requirement in the definition of θp

Proof of Lemma 4. A first step consists of rewriting inequality (10) as one of the first-order

conditions of the Lagrangian method. The first step is Claim 1 in the proof of Proposition 2 in

Appendix C.3. I repeat the claim here for convenience.

Claim 1. Inequality (10) with g = gn is equivalent to∫ θ̄

θ̂

[
ρ

1− F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (33)

The proof of Claim 1 is in the proof of Proposition 2 in Appendix C.3. It also shows that

inequality (33) and inequality (34) are equivalent.∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (34)

The second step uses the equivalence between inequalities (10) and (34) and the assumption

that inequality (10) holds with equality for some θ̃ < θ̄ and θ̂ = θ̃ to get:∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ) = ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̃)). (35)

Multiplying both sides of (34) by (1− F (θ̃)) and using (35) for the right-hand side gives

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ),

which simplifies to

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + βθ

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
βθ
]
dF (θ).

Rearranging terms give:

(1−F (θ̃))β

∫ θ̄

θ̂

θdF (θ)−(1−F (θ̃))(1−F (θ̂))ρθ̂ ≤ (1−F (θ̂))β

∫ θ̄

θ̃

θdF (θ)−(1−F (θ̂))(1−F (θ̃))ρθ̃.

Since θ̃ ≤ θ̂ < θ̄, both sides can be divided by (1− F (θ̃))(1− F (θ̂)) to give the result.
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C.6 Corollary 1 on the comparative statics of θp

Proof of Corollary 1. Consider two economies that are identical except for the degree of present

bias of their governments, βl < βh, and let θp,β denote the respective threshold fiscal needs above

which the cap binds. To show that θp,βl ≤ θp,βh , it suffices to show that if inequality (10) holds

for an economy with βh, it also holds—all else equal—for an economy with βl. Substituting the

following identity θ∆(g, θ) = θ − θ̂ + θ̂∆(g, θ̂), which holds for any g, θ, and θ̂, in (10) gives∫ θ̄

θ̂

(
θ − θ̂ − θ(1− β)

)
dF (θ) ≤ (ρ− 1)(θ̂ − θ̃p + θ̃p∆(g(θ̃p), θ̃p))(1− F (θ̂))

which reduces to

βE[θ|θ ≥ θ̂]− θ̂ ≤ (ρ− 1)
(
θ̂ − θ̃p + θ̃p∆(g(θ̃p), θ̃p)

)
. (36)

For the discretionary allocation, the wedge ∆(g(θ̃p), θ̃p)) is null irrespectively of β. Hence, if

inequality (36) is satisfied for βh, it is also satisfied for βl < βh.

For the allocation implemented by on-equilibrium penalties, the foa-wedge is increasing in the

degree of present bias. Substituting the foa-wedge (7) in (36) gives

β(E[θ|θ ≥ θ̂]− θ̃p)− θ̂ ≤ (ρ− 1)(θ̂ − θ̃p)− θ̃p + ρ
1− F (θ̃p)

f(θ̃p)
. (37)

Because θ̂ ≥ θ̃p, if inequality (37) is satisfied for βh, it is also satisfied for βl < βh. Because θp,βl
is the infimum of a superset of the set defining θp,βh , we have θp,βl ≤ θp,βh .

Consider two economies that are identical except for the asymmetry in the cost of penalties,

ρl < ρh, and let θp,ρ denote the threshold fiscal needs above which the cap binds. I show that

the set of θ̃p satisfying inequality (10) for θ̂ ≥ θ̃p in the economy with degree of asymmetry ρh,

of which θp is the infimum, is a superset of the set for the economy with degree of asymmetry ρl.

Inequality (10), reduces to inequality (36). Because θ̂ ≥ θ̃p and the wedge is null for the

discretionary allocation, if (36) is satisfied for ρl, it is also satisfied for ρh > ρl. Hence, θp,ρh ≤ θp,ρl
for a cap on the discretionary allocation.

For the allocation implemented by the foa-wedge, inequality (36) reduces to inequality (37).

Likewise, because θ̂ ≥ θ̃p and the inverse hazard rate is positive, if (37) is satisfied for ρl, it is

also satisfied for ρh > ρl. Hence, θp,ρh ≤ θp,ρl for a cap on the allocation implemented by the

foa-wedge.

C.7 Proposition 3 on the optimality of a cap

Proof of Proposition 3. The proof consists of applying Lemma 8. Let gpd denote the discretion

and off-equilibrium penalties allocation, u∗(θ) = U(gpd(θ)) for θ ∈ Θ, and t∗ = 0. Since gpd is
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non-decreasing, (u∗, t∗) ∈ Φ. The Lagrange multiplier function is

ρΛ∗(θ) =


ρ for θ ≥ θp

ρF (θ) + (1− β)θf(θ) for θ ∈ (θ, θp)

0 for θ = θ.

A valid Lagrange multiplier function is non-decreasing. The lower bound on the elasticity

of the density in Assumption sL holding for θ ≤ θp is equivalent to the Lagrange multiplier

Λ∗ being non-decreasing on (θ, θp). The jumps at θ and θp must be non-decreasing. The jump

at θ is non-negative since f is non-negative, 0 < β ≤ 1, and ρ > 0. The jump at θp is non-

negative, as shown in Lemma 5. Lemma 5 shows that Assumption sL holding for θ ≤ θp and

βE[θ|θ ≥ θ̂] − ρθ̂ ≤ βE[θ|θ ≥ θp] − ρθp holding for θ̂ ≥ θp implies ρ1−F (θ)
θf(θ)

≥ 1 − β for θ ≤ θp,

which is a non-negative jump of Λ∗ at θp. Note also that 1 − Λ∗ is integrable because 1 − F is

integrable and the expectation exists.

The rest of the proof checks that the conditions in terms of Gateaux derivatives in Lemma 8

are satisfied. The Gateaux derivative (26) in the direction of h, with Lagrange multiplier function

Λ∗ reads

∂L(u, t, h, ht|Λ∗) =

∫
Θ

[(
− (1− β)θ(1−∆(U−1(u(θ)))) + ρ1−F (θ)

f(θ)

)
h(θ)

]
dF (θ)

+ (β − ρ)

∫
Θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
dF (θ)

+

∫ θp

θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
ρdΛ∗(θ)− ρ

∫ θp

θ

[(1− Λ∗(θ)) h(θ)] dθ.

Rewriting the Euler equations characterizing gd gives

θ∆(U−1(u∗(θ)), θ) =

{
θ − θp for θ > θp

0 for θ ≤ θp.

After substitution of this expression, the Gateaux derivative evaluated at u∗ simplifies to

∂L(u∗, t∗, h, ht|Λ∗) =

∫ θp

θ

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
− ρ1−Λ∗(θ)

f(θ)

)
f(θ)h(θ)

]
dθ (38)

+

∫ θ̄

θp

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ) (θ − θp)

)
f(θ)h(θ)

]
dθ. (39)

The Lagrange multiplier Λ∗ over (θ, θp] is defined so that the integral (38) is null, for (h, ht) ∈
Φ. Suppose that θ̄ <∞ so that for any (h, ht) ∈ Φ, h is bounded (the case θ̄ =∞ is addressed

below). For h bounded, the following term is null:

lim
θ̂→θ̄

∫ θ̄

θ̂

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ h(θ̂) = 0,
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hence, integrating (39) by parts gives∫ θ̄

θp

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ h(θp) (39.1)

+

∫ θ̄

θp

[∫ θ̄

θ̂

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ

]
dh(θ̂). (39.2)

As the next claim shows, θp is defined so that the inner integral in (39.2) is negative for θ̂ ≥ θp

and null for θ̂ = θp (which also implies that (39.1) is null).

Claim 3. Inequality (10) with g = gd is equivalent to∫ θ̄

θ̂

[(
−(1− β)θ̃ + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

)
f(θ)

]
dθ ≤ 0. (40)

Proof of Claim 3. After substitution of the wedge evaluated at the discretionary allocation, i.e.,

θ̂∆(gd(θ̃), θ̂) = θ̂ − θ̃, and rearranging, inequality (10) reads as follows:∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− β)θ̃(1− F (θ̂)). (41)

Adding and subtracting ρ(θ − θ̃) to the integrand on the left-hand side gives∫ θ̄

θ̂

[
ρ(θ − θ̂) + (β − ρ)(θ − θ̃)

]
dF (θ) ≤ (1− β)θ̃(1− F (θ̂)).

Integrating the left-hand side by parts gives inequality (40).

Since θp > θ, inequality (10) holds with equality for θ̂ = θ̃ = θp, hence (40) holds with equality

for θ̂ = θ̃ = θ. By definition of θp > θ, (39.1) is null and the inner integral of (39.2) is negative

for θ̂ ≥ θp.

For θ̄ =∞, the argument follows the one in the proof of Proposition 2 in Appendix C.3, with

gpd instead of gnpd .

Consider (h, ht) = (u∗, t∗). The Gateaux derivative ∂L(u∗, t∗, u∗, t∗|Λ∗) is null since (39.1) and

(39.2) are both null. Line (39.2) is null for h = u∗ because dh(θ) = du∗(θ) = 0 for θ ≥ θp.

Consider any (h, ht) ∈ Φ. The Gateaux derivative ∂L(u∗, t∗, h, ht|Λ∗) is negative since (39.1)

is null and (39.2) is negative. Line (39.2) is negative because dh ≥ 0 since (h, ht) ∈ Φ and (40)

is negative.

C.8 Proposition 4 on the optimality of an exemption

Proof of Proposition 4. The proof consists of applying Lemma 8. Let gnpx denote the exemption,

on-equilibrium, and off-equilibrium penalties allocation, u∗(θ) = U(gnpx (θ)) for θ ∈ Θ, and t∗ = 0.

The lower bound on the derivative of the inverse hazard rate implies that gnpx (θ) is non-decreasing,
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hence (u∗, t∗) ∈ Φ. The Lagrange multiplier function is Λ∗(θ) = 1 for θ ∈ Θ is valid since it is

non-decreasing and 1− Λ∗ is integrable.

The definition of gnpx implies the following wedge schedule:

(1− ρ)θ(1−∆(U−1(u∗(θ)), θ)) =


ρ1−F (θp)

f(θp)
+ (β − ρ)θp for θ ≥ θp

ρ1−F (θ)
f(θ)

+ (β − ρ)θ for θx ≤ θ ≤ θp

ρ1−F (θx)
f(θx)

+ (β − ρ)θx for θ ≤ θx .

The Gateaux derivative (27), evaluated at the allocation u∗ and the constant Lagrange multiplier

function Λ∗, reduces to

∂L(u∗, t∗, h, ht|Λ∗) =

∫ θ̄

θp

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ)(θ − θp)

)
h(θ)

]
dF (θ) (42)

+

∫ θx

θ

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
+ (β − ρ)(θ − θx)

)
h(θ)

]
dF (θ) (43)

+
((
θ − ρ

1−ρ
1−F (θx)
f(θx)

− β−ρ
1−ρ θx

)
h(θ)− ht

)
ρ. (44)

Integrating (42) and (43) by parts and grouping terms,

∂L(u∗, t∗, h, ht|Λ∗) = −ρht (45)

+

∫ θ̄

θp

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ) h(θp) (46)

+

∫ θ̄

θp

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ)

]
dh(θ̂) (47)

+

(∫ θx

θ

[
ρ1−F (θ)

f(θ)
−ρ1−F (θx)

f(θx)
+ (β − ρ) (θ − θx)

]
dF (θ)+

(
θ − ρ

1−ρ
1−F (θx)
f(θx)

− β−ρ
1−ρ θx

)
ρ

)
h(θx) (48)

−
∫ θx

θ

[∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
+(β − ρ)(θ − θx)

]
dF (θ)+

(
θ − ρ

1−ρ
1−F (θx)
f(θx)

+ β−ρ
1−ρ θx

)
ρ

]
dh(θ̂), (49)

using that limθ̂→θ̄
∫ θ̄
θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θp)

f(θp)
+ (β − ρ) (θ − θp)

]
dF (θ)h(θ̂) is zero since h is bounded

for θ̄ <∞. If θ̄ =∞, the result follows from taking the limit of a sequence of environments with

compact support as in the proof of Proposition 3 in Appendix C.7.

The terms (46) and (47) with θ̂ = θp are null and (47) is non-positive for θ̂ ≥ θp (see Claim 1

in the proof of Proposition 2 in Appendix C.3).

Claim 4. For θ̂ ≤ θx,∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
− (ρ− β) (θ − θx)

]
dF (θ) ≥ −ρθ + ρ

(
ρ

1−ρ
1−F (θx)
f(θx)

− ρ−β
1−ρ θx

)
, (50)

with equality at θ̂ = θx.
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Proof of Claim 4. Inequality (50) holds with equality at θ̂ = θx precisely because of the definition

of an interior θx in (11).

Since the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ−β over θ ∈ [θ, θp] and θx ≤ θp, integrating

from θ to θx gives ρ1−F (θ)
f(θ)

− ρ1−F (θx)
f(θx)

≤ (ρ − β)(θ − θx). The left-hand side of inequality (50) is

hence decreasing as a function of θ̂, and the inequality holds with equality at θ̂ = θx. It follows

that inequalities (50) hold for θ̂ ≤ θx as claimed.

The last step of the proof shows that the conditions in terms of Gateaux derivatives in Lemma

8 are satisfied. First, consider the different terms (45)-(49) of the Gateaux derivative in the

direction of the solution (h, ht) = (u∗, t∗). Since t∗ = 0, the term on line (45) is zero. Lines (46)

and (48) are zero by Claim 1 and Claim 4. Lines (47) and (49) are zero because u∗ is constant

above θp and below θx. Hence, ∂L(u∗, t∗, u∗, t∗|Λ∗) = 0 as desired.

Second, consider the Gateaux derivative (45)-(49) in any direction (h, ht) ∈ Φ. Since ht ≥ 0,

the term on line (45) is negative. Claim 1 and Claim 4 imply that lines (47) and (49) are negative

since h is non-decreasing and lines (46) and (48) are zero. Hence, ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for

(h, ht) ∈ Φ as desired.

C.9 Lemma 6 on the second requirement in the definition of θx

Proof of Lemma 6. A first step consists of rewriting inequality (11) as the first-order condition

of the Lagrangian method. I record this step in the following claim.

Claim 5. Inequality (11) is equivalent to∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− (ρ− β)(θ − θ̃)

]
dF (θ) ≥ ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
. (51)

Proof of Claim 5. Substituting the identity θ̂∆(g, θ̂) = θ̂ − θ̃ + θ̃∆(g, θ̃), and the foa-wedge (7)

in inequality (11) gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂) ≤

∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρ(θ̂ − θ̃) + ρθ̃∆(gn(θ̃), θ̃).

Again, using the foa-wedge (7), θ̃∆(gn(θ̃), θ̃) = θ̃ − 1
1−ρ

(
ρ1−F (θ̃)

f(θ̃)
− (ρ− β)θ̃

)
, which, upon sub-

stitution in the previous inequality gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂) ≤

∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρ(θ̂ − θ̃) + ρθ̃ − ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
.

Upon subtracting ρθ on both sides and rearranging terms, the inequality reads

ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
≤
∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρθ̂ − ρθ.
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Adding and subtracting ρθ to the integrand on the right-hand side gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
≤
∫ θ̂

θ

[
ρ(θ − θ̂)− (ρ− β)(θ − θ̃)

]
dF (θ) + ρθ̂ − ρθ.

Integration by parts gives the following identity:

ρ

∫ θ̂

θ

[θ − θ̂]dF (θ) + ρθ̂ − ρθ =

∫ θ̂

θ

[
ρ1−F (θ)

f(θ)

]
dF (θ),

which, after substitution in the right-hand side of the previous inequality, gives (51).

The second step uses the equivalence in Claim 5 and the assumption that inequality (11) holds

with equality for some θ̃ < θ̄ and θ̂ = θ̃ to get:∫ θ̃

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ) = −ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
. (52)

Substituting (52) in the right-hand side of (51) gives∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ)≥

∫ θ̃

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ).

Subtracting the left-hand side on both sides gives

0 ≥
∫ θ̃

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ),

which gives (12) after rearranging terms.

C.10 Corollary 3 on the comparative statics of θx

Proof of Corollary 3. Consider two economies that are identical except for the degree of present-

bias of their governments, βl < βh, and let θx,β denote the respective threshold fiscal needs for

the exemption.

Substituting the following identity θ∆(g, θ) = θ − θ̂ + θ̂∆(g, θ̂), which holds for any g, θ, and

θ̂, in (11) gives∫ θ̂

θ

(
θ̂ − βθ

)
dF (θ) ≤

(
θ̂ − θ̃x

)(
ρ(1− F (θ̂)) + F (θ̂)

)
+ θ̃x∆(gn(θ̃x), θ̃x)

(
ρ(1− F (θ̂)) + F (θ̂)

)
,

(53)

and for θ̂ = θ̃x = θx ∈ (θ, θ̄), the inequality holds with equality:∫ θ̃x

θ

(
θ̃x − βθ

)
dF (θ) = θ̃x∆(gn(θ̃x), θ̃x)

(
ρ(1− F (θ̂)) + F (θ̂)

)
.
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Note that, as expected, there is an exemption only if the wedge is strictly positive. If the

wedge is null, the inequality (11) cannot be satisfied for θ̂ = θ̃x. If the wedge is strictly positive,

then it is the foa-wedge,

∆n(θ) =
1

1− ρ

(
(1− β)− ρ1− F (θ)

θf(θ)

)
.

Substituting the foa-wedge in (53), gives∫ θ̂

θ

(
θ̂ − βθ

)
dF (θ) (54)

≤
(
θ̂ − θ̃x

)(
ρ+ (1− ρ)F (θ̂)

)
+

(
ρ

1− ρ
+ F (θ̂)

)(
θ̃x(1− β)− ρ1− F (θ̃x)

f(θ̃x)

)
.

Because θ̂ ≤ θ̃x, note that
∫ θ̂
θ
θdF (θ) ≤ θ̃xF (θ̂) which, together with βl < βh, implies

βh

∫ θ̂

θ

θdF (θ)−
(

ρ

1− ρ
+ F (θ̂)

)
θ̃xβh < βl

∫ θ̂

θ

θdF (θ)−
(

ρ

1− ρ
+ F (θ̂)

)
θ̃xβl.

As a result, if the inequality (54) is satisfied with βh, then it is also satisfied with βl < βh. Hence,

the set used to define θx,βh is a subset of the set used to define θx,βl , and θx,βh ≤ θx,βl .

C.11 Proposition 5 on the optimality of a tight cap

Proof of Proposition 5. The proof consists of applying Lemma 8. Let u∗(θ) = U(gc) for θ ∈ Θ

and t∗ = 0, hence (u∗, t∗) ∈ Φ. The Lagrange multiplier function Λ∗(θ) = 1 for θ ∈ Θ is valid

since it is non-decreasing and 1− Λ∗ is integrable.

The wedge evaluated at gc is θ∆(gc, θ)) = θ − β
∫

Θ
θ̃dF (θ̃). The Gateaux derivative (27),

evaluated at (u∗, t∗) and in the direction (h, ht), given the constant Lagrange multiplier Λ∗, reads

∂L(u∗, t∗, h, ht|Λ∗) =

∫
Θ

[(
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

)
h(θ)

]
dF (θ) (55)

+

((
θ − β

∫
Θ

θ̃ dF (θ̃)

)
h(θ)− ht

)
ρ. (56)

Integrating the inverse hazard rate by parts gives the following:
∫ θ̂
θ

1−F (θ)
f(θ)

dF (θ) = θ̂(1−F (θ̂))−

θ+
∫ θ̂
θ
θdF (θ). Since the expectation of θ exists, θ̂(1−F (θ̂))→ 0 as θ̂ → θ̄. Substitute θ in (56),(

θ − β
∫

Θ

θ̃ dF (θ̃)

)
h(θ)− ht = −

(∫
Θ

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ)

)
h(θ)− ht.

First, I show that the Gateaux derivative in the direction of the candidate solution is null

when evaluated at the candidate solution. Consider the direction h(θ) = u∗(θ) for θ ∈ Θ and

ht = t∗ = 0. Since h is constant, h(θ) = h(θ) for θ ∈ Θ and h(θ) can be taken out of the
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expectation in (55). Since −β(1−ρ) +β−ρ = −ρ(1−β), it follows that ∂L(u∗, t∗, u∗, t∗|Λ∗) = 0

as claimed.

It remains to show that the Gateaux derivative evaluated at (u∗, t∗) in any direction (h, ht) ∈ Φ

is non-positive. Integrating (55) by parts gives∫
Θ

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃dF (θ̃) + (β − ρ)θ

]
dF (θ)h(θ) (55.1)

+

∫
Θ

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

]
dF (θ)

]
dh(θ̂). (55.2)

Claim 6. Suppose Assumption I holds for θ and the derivative of ρ1−F (θ)
f(θ)

is smaller than ρ− β
for θ ∈ Θ, then ∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

]
dF (θ) ≤ 0 (55.2.i)

for all θ̂ ∈ Θ and
∫

Θ

[1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ) ≤ 0.

Proof of Claim 6. The proof consists of first showing that the inequality (55.2.i) holds for θ̂ = θ.

The condition on the slope of the inverse hazard rate implies ρ1−F (θ)
f(θ)
−(ρ−β)θ ≤ ρ1−F (θ)

f(θ)
−(ρ−β)θ

for θ ∈ Θ. Assumption I for θ implies ρ1−F (θ)
f(θ)

≤ (1− β)θ. Combining the two inequalities gives

ρ1−F (θ)
f(θ)

− (ρ− β)θ ≤ (1− ρ)θ. Taking expectations on both sides gives

ρ

∫
Θ

1−F (θ)
f(θ)

dF (θ)− (ρ− β)

∫
Θ

θdF (θ) ≤ (1− ρ)θ. (57)

Integrating the inverse hazard rate by parts to substitute θ in (57) gives

ρ

∫
Θ

1−F (θ)
f(θ)

dF (θ)− (ρ− β)

∫
Θ

θdF (θ) ≤ (1− ρ)

(∫
Θ

θdF (θ)−
∫

Θ

1−F (θ)
f(θ)

dF (θ)

)
,

which simplifies to
∫

Θ
1−F (θ)
f(θ)

dF (θ) ≤ (1 − β)
∫

Θ
θdF (θ). Note that for θ̂ = θ, inequality (55.2.i)

reduces to
∫

Θ

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ).

Second, I show that given that inequality (55.2.i) holds for θ̂ = θ, then the condition on the

derivative of the inverse hazard rate implies that inequality (55.2.i) holds for θ̂ ∈ Θ. Rewrite

inequality (55.2.i) as follows: E
[
ρ1−F (θ)

f(θ)
− (ρ− β)θ

∣∣ θ ≥ θ̂
]
≤ β(1−ρ)

∫
Θ
θ dF (θ). The condition

on the slope of the inverse hazard rate implies that ρ1−F (θ)
f(θ)

−(ρ−β)θ is decreasing. It follows that

the conditional expectation E
[
ρ1−F (θ)

f(θ)
− (ρ− β)θ

∣∣ θ ≥ θ̂
]

is a decreasing function of θ̂. Since

the inequality holds for θ̂ = θ, it follows that it holds for θ̂ ∈ Θ.

For any (h, ht) ∈ Φ, h is non-decreasing so inequality (55.2.i) implies that line (55.2) is non-

positive. Claim 6 also shows that line (55.1) is non-positive.
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C.12 Proposition 6 on the optimality of a tight cap

Proof of Proposition 6. The proof is identical to the proof of Proposition 5 up to Claim 6. The

rest of the proof uses implications from the definition of a high degree of present bias to imply

the same conclusion as the one in Claim 6. Note that∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ dF (θ)− (ρ− β)θ

]
dF (θ) ≤ −β(1− ρ)

∫
Θ

θ dF (θ) ≤ 0,

where the first inequality uses Assumption H, ρ1−F (θ)
f(θ)

≤ (ρ − β)θ, for θ ∈ Θ, and the second

inequality follows from ρ ≤ 1. A high degree of present bias also implies 1−F (θ)
θf(θ)

≤ 1 − β for

θ ∈ Θ because ρ−β
ρ
≤ 1−β for 0 < ρ ≤ 1. Hence

∫ θ̄
θ̂

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ) ≤ 0 for θ̂ ∈ Θ. For

(h, ht) ∈ Φ, h is non-decreasing and ht ≥ 0. Hence ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for (h, ht) ∈ Φ.

C.13 Proposition 7 on the measurement of fiscal needs

Proof of Proposition 7. To verify that the guess is a solution, it suffices to check that the value

function is a fixed point of the Bellman equation and that the policy functions solve the opti-

mization problem with the value function.

First, to check that the policy functions solve the optimization problem with the continuation

value (14), take the first-order condition to get θ(w + b′)−1 = βδRE[a(θ′)|θ]
(
T − Rb′ + b̄

)−1
.

Substituting the policy function (15) for spending on the left-hand side and the policy function for

borrowing on the right-hand side gives θ
(
(1− s(θ)) (w + b̄)

)−1
= βδRE[a(θ′)|θ](s(θ)(w+b̄)R)−1.

The terms involving the effective wealth w+b̄ cancel out. Rearranging terms to isolate the savings

rate gives s(θ) = βδE[a(θ′)|θ]
θ+βδE[a(θ′)|θ] .

Having verified that the policy functions (15) with the savings rate (16) solve the maximization

problem in the Bellman equation given the value function (14), it only remains to verify that the

value function solves the Bellman equation.

To check that the value function is a fixed point of the Bellman equation, substitute the

value function (14) on both sides of the Bellman equation (13) and, after substitution of the

policy functions, the terms involving the effective wealth w + b̄ cancel out (because a(θ) =

θ + βδE [a(θ′)|θ]) to give ν(θ) = θ ln(1 − s(θ)) + βδE [a(θ′)|θ] ln
(
(s(θ)R)

)
+ βδE[ν(θ′)|θ]. The

term ν(θ) solves the following recursion:

ν(θ) = θ ln

(
θ

θ + βδE [a(θ′)|θ]

)
+ βδE [a(θ′)|θ] ln

(
βδE [a(θ′)|θ]

θ + βδE [a(θ′)|θ]

)
+ βδ ln

(
R
)

+ βδE[ν(θ′)].

I guess that the conditional expectation is affine in θ (and verify the guess below), E [a(θ′)|θ] =

a0 +a1θ. Then, a(θ) = θ(1+βδa1)+βδa0. To verify the guess that the conditional expectation of

a(·) is affine, substituting in the expectation, E [a(θ′)|θ] = θe(1+βδa1)+βδa0+ϕ(1+βδa1)θ, which

confirms that the conditional expectation is affine and the parameters are a1 = ϕ/(1−ϕβδ) and
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a0 = 1, where the last equality follows from the normalization. Substituting the linear conditional

expectation simplifies the formula for the savings rate s(·) which gives (16).

This confirms that the value function (14) with a(θ) solves the Bellman equation.

C.14 Assumption H implies that the cap is tight

This section contains the formal statement and the proof of an observation made in Section 3.3.

Claim 7. Assumption H implies that the tight cap allocation lies below the discretionary alloca-

tion; that is, gc ≤ gd(θ) for θ ∈ Θ.

Proof of Claim 7. Integrate the inequality in Assumption H to get∫ θ̄

θ

(1− F (θ))dθ ≤ (1− β)

∫ θ̄

θ

θf(θ)dθ.

Integrating 1− F by parts gives∫ θ̄

θ

θf(θ)dθ − θ + lim
θ→θ̄

θ(1− F (θ)) ≤ (1− β)

∫ θ̄

θ

θf(θ)dθ.

Since the expectation of θ is finite and the distribution of θ has a density, limθ→θ̄ θ(1−F (θ)) = 0.

The inequality reduces to β E[θ] ≤ θ, which is equivalent to gc ≤ gd(θ). The discretionary

allocation is non-decreasing and hence gc ≤ gd(θ) ≤ gd(θ).

D Sensitivity analysis of the measurement

In this section, I study the sensitivity of the measurement to the elasticity of intertemporal

substitution, the present bias of the governments, the persistence of shocks to fiscal needs, the

borrowing limit, and the location parameter for the residuals.

Elasticity of Intertemporal Substitution. To elicit the role of the Elasticity of Intertempo-

ral Substitution (EIS) in the measurement, I relax the assumption of a unit EIS and, to preserve

analytical tractability, I assume that the interest rate is constant. Let the utility index be CRRA

with EIS 1/η.

Proposition 8. The value function V (w, θ) = a(θ)

(
w+b̄
)1−η

1−η satisfies the Bellman equation (13)

for a(θ) = (θ1/η + (βδR1−η)1/η)η. The policy function (15) solves the government problem with

the value function and the savings rate is only a function of the intertemporal elasticity of sub-

stitution, the interest rate, the discount factor, and the realized fiscal needs as follows:

s(θ) =
(βδ)

1
ηR

1−η
η

θ
1
η + (βδ)

1
ηR

1−η
η

· (58)
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Proof of Proposition 8. Note that E[a(θ)] = E[(θ1/η + (βδR1−η)1/η)η] = 1, where the first in-

equality uses the guess for a(θ) and the second equality follows from the normalization of the

public spending needs.

First, to check that the policy functions solve the optimization problem with the continuation

value V , take the first-order condition to get θ(w+b′)−η = βδRE[a(θ)]
(
T−Rb′+b̄

)−η
. Substituting

the policy function (15), θ
(
(1− s(θ)) (w + b̄)

)−η
= βδRE[a(θ)](s(θ)(w + b̄)R)−η. Rearranging

terms to isolate the savings rate gives (58) because E[a(θ)] = 1.

To check that the value function is a fixed point of the Bellman equation, substitute the value

function on both sides of the Bellman equation (13) to get, after substituting the policy function,

a(θ)

(
(w + b̄)

)1−η

1− η
= θ

((1− s(θ)) (w + b̄))1−η

1− η
+ βδE [a(θ′)]

(
(s(θ) (w + b̄)R− b̄+ b̄)

)1−η

1− η
.

Substituting the saving rate gives and a(θ) =
(
θ

1
η +R

1−η
η (βδ)

1
ηE [a(θ′)]

1
η

)η
, as claimed.

Rewriting (58) to express the fiscal needs as a function of the saving rate gives θ(s) =

βδ
(

1−s
s

)η
R1−η. The empirical framework identifies the product of the tail parameter and the

inverse of the elasticity of intertemporal substitution from variations in the savings rate across

countries and time,

ln(1− F (θ(sit))) = −γη ln

(
1− sit
sit

)
− γ(1− η) ln(R)− γ ln(βδ).

Hence, the measured tail parameter γ is inversely related to η. The intuition is the following.

A larger elasticity of intertemporal substitution—a lower η—implies that a smaller variation in

fiscal needs rationalizes the observed saving rates, and hence the tail is thinner (i.e., a larger γ).

The degrees of present bias of the governments. The calibration of the degree of present

bias is such that, each country’s average spending in the model matches the average spending

in the data. Because the model does not separately identify δ, β, and the average fiscal needs,

I set the discount factor of the society δ = 0.96 and normalize the level of the average fiscal

needs such that the country with the highest estimated β, namely Luxembourg, has a β = 1.

This calibration attributes heterogeneity in average government spending across countries to

heterogeneity in the degrees of present bias of the governments. The calibrated discount factors

β are, 0.73 for Greece, 0.77 for Italy, 0.79 for Portugal, 0.80 for Hungary, 0.81 for Romania, 0.81

for Malta, 0.81 for Cyprus, 0.82 for Spain, 0.82 for Slovakia, 0.83 for Belgium, 0.83 for Ireland,

0.83 for France, 0.83 for Poland, 0.85 for Croatia, 0.85 for Austria, 0.86 for Slovenia, 0.87 for

Germany, 0.87 for Czechia, 0.87 for Lithuania, 0.88 for the Netherlands, 0.88 for Latvia, 0.91
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Figure 10: Tail empirical distribution by country
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Notes: This figure decomposes the tail empirical distribution depicted in Figure 8a by country. The orange lines are the same as

the orange line in Figure 8b.

for Bulgaria, 0.92 for Finland, 0.93 for Sweden, 0.97 for Denmark, 0.97 for Estonia, and 1 for

Luxembourg.

To elicit the sensitivity of the measurement to heterogeneity in the degrees of present bias,
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consider an alternative calibration in which the governments have the same degree of present bias

(set at the average of the estimates above). This alternative calibration attributes heterogeneity

in average government spending across countries to heterogeneity in the average fiscal needs of

the countries. Figures 11a and 11b show that the the tail of the distribution of shocks to fiscal

needs also display evidence of a heavy tail with thickness γ̂ = 7.59 and a standard error of 0.56.

Figure 11: Sensitivity analysis of the tail empirical distribution
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(b) Top two-thirds of shocks to fiscal needs (βi = βj)
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(c) All measured fiscal needs (ϕ = 0)
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(d) Top two-thirds of fiscal needs (ϕ = 0)
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(e) All measured shocks to fiscal needs (Ri 6= Rj)

10 2 2 × 10 2 3 × 10 2 4 × 10 2

log size 

10 3

10 2

10 1

100

log
[(r

an
k -

 1/
2)/

(N
-1/

2)]

(f) Top two-thirds of shocks to fiscal needs (Ri 6= Rj)
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Persistence of shocks. The analysis in the main text jointly infers the fiscal needs and the

associated persistence of the fiscal needs. Corollary 4 shows that persistence in the shocks to

the fiscal needs amplifies the variation in the measured fiscal needs. To evaluate the sensitivity
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of the results to this amplification mechanism, Figures 11c and 11d depict the tail empirical

distribution of fiscal needs measured with ϕ = 0. In line with Corollary 4, not modeling the

persistence in the shock biases the measurement of the tail thickness downward, γ̂ = 13.54 and

a standard error of 0.94.

Borrowing limit. The analysis in the main text computes each government’s borrowing limit

based on the average government revenues for each country and on the average interest rate for

the EU. Because small differences in interest rates can lead to large differences in the discounted

value of future cash flows, Figures 11e and 11f depict the tail empirical distribution based on a

measure of the borrowing limit that uses each countries average interest rate instead of the EU

average. The estimate is γ̂ = 6.83, with a standard error of 0.50.

Figure 12: Sensitivity of the Hill estimates to the location of the distribution
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Notes: The black line depicts the same Hill plot as in Figure 9. The light grey line depicts the Hill plot for the residuals centered

around 0. The dark grey line depicts the Hill plot for the residuals with location shifted by half of the shift of location for the black

line.

Location shifter of the residuals. In the main text, because the Hill estimator uses the log

of the shocks, the residuals are minimally shifted to have all estimates of the shocks be positive.

Although this does not affect the thickness of the tail of a distribution in theory, it does affect the

Hill estimator. Figure 12 shows that the analysis in the main text gives a conservative estimate

of the tail thickness.
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